65 research outputs found

    AGE-RELATED EFFECTS OF INCREASING POSTURAL CHALLENGE ON EYE MOVEMENT ONSET LATENCIES TO VISUAL TARGETS

    Get PDF
    When a single light cue is given in the visual field, our eyes orient towards it with an average latency of 200 ms. If a second cue is presented at or around the time of the response to the first, a secondary eye movement occurs that represents a re-orientation to the new target. While studies have shown that eye movement latencies to ‘single-step’ targets may or may not be lengthened with age, secondary eye-movements (during ‘double-step’ displacements) are significantly delayed with increasing age. The aim of this study was to investigate if the postural challenge posed simply by standing (as opposed to sitting) results in significantly longer eye movement latencies in older adults compared to the young. Ten young (65 years) participated in the study. They were required to fixate upon a central target and move their eyes in response to 2 types of stimuli: 1) a single-step perturbation of target position either 15º to the right or left, and 2) a double-step target displacement incorporating an initial target jump to the right or left by 15º, followed after 200 ms, by a shift of target position to the opposite side (e.g., +15º then -15º). All target displacement conditions were executed in sit and stand positions with the participant at the same distance from the targets. Eye movements were recorded using electro-oculography. Older adults did not show significantly longer eye movement latencies than the younger adults for single-step target displacements, and postural configuration (stand compared to sit) had no effect upon latencies for either group. We categorised double-step trials into those during which the second light changed after or before the onset of the eye shift to the first light. For the former category, young participants showed faster secondary eye shifts to the second light in the standing position, while the older adults did not. For the latter category of double-step trial, young participants showed no significant difference between sit and stand secondary eye movement latencies, but older adults were significantly longer standing compared to sitting. The older adults were significantly longer than the younger adults across both postural conditions, regardless of when the second light change occurred during the eye shift to the first light. We suggest that older adults require greater time and perhaps attentional processes to execute eye movements to unexpected changes of target position when faced with the need to maintain standing balance. Keywords: Balance, Ageing, Gaze, Electro-oculography, Target perturbations

    Contribution of primary motor cortex to compensatory balance reactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid compensatory arm reactions represent important response strategies following an unexpected loss of balance. While it has been assumed that early corrective actions arise largely from sub-cortical networks, recent findings have prompted speculation about the potential role of cortical involvement. To test the idea that cortical motor regions are involved in early compensatory arm reactions, we used continuous theta burst stimulation (cTBS) to temporarily suppress the hand area of primary motor cortex (M1) in participants prior to evoking upper limb balance reactions in response to whole body perturbation. We hypothesized that following cTBS to the M1 hand area evoked EMG responses in the stimulated hand would be diminished. To isolate balance reactions to the upper limb participants were seated in an elevated tilt-chair while holding a stable handle with both hands. The chair was held vertical by a magnet and was triggered to fall backward unpredictably. To regain balance, participants used the handle to restore upright stability as quickly as possible with both hands. Muscle activity was recorded from proximal and distal muscles of both upper limbs.</p> <p>Results</p> <p>Our results revealed an impact of cTBS on the amplitude of the EMG responses in the stimulated hand muscles often manifest as inhibition in the stimulated hand. The change in EMG amplitude was specific to the target hand muscles and occasionally their homologous pairs on the non-stimulated hand with no consistent effects on the remaining more proximal arm muscles.</p> <p>Conclusions</p> <p>Present findings offer support for cortical contributions to the control of early compensatory arm reactions following whole-body perturbation.</p

    An Ensemble Analysis of Electromyographic Activity during Whole Body Pointing with the Use of Support Vector Machines

    Get PDF
    We explored the use of support vector machines (SVM) in order to analyze the ensemble activities of 24 postural and focal muscles recorded during a whole body pointing task. Because of the large number of variables involved in motor control studies, such multivariate methods have much to offer over the standard univariate techniques that are currently employed in the field to detect modifications. The SVM was used to uncover the principle differences underlying several variations of the task. Five variants of the task were used. An unconstrained reaching, two constrained at the focal level and two at the postural level. Using the electromyographic (EMG) data, the SVM proved capable of distinguishing all the unconstrained from the constrained conditions with a success of approximately 80% or above. In all cases, including those with focal constraints, the collective postural muscle EMGs were as good as or better than those from focal muscles for discriminating between conditions. This was unexpected especially in the case with focal constraints. In trying to rank the importance of particular features of the postural EMGs we found the maximum amplitude rather than the moment at which it occurred to be more discriminative. A classification using the muscles one at a time permitted us to identify some of the postural muscles that are significantly altered between conditions. In this case, the use of a multivariate method also permitted the use of the entire muscle EMG waveform rather than the difficult process of defining and extracting any particular variable. The best accuracy was obtained from muscles of the leg rather than from the trunk. By identifying the features that are important in discrimination, the use of the SVM permitted us to identify some of the features that are adapted when constraints are placed on a complex motor task

    Characterisation of the transcriptome of a wild great tit Parus major population by next generation sequencing

    Get PDF
    Background: The recent development of next generation sequencing technologies has made it possible to generate very large amounts of sequence data in species with little or no genome information. Combined with the large phenotypic databases available for wild and non-model species, these data will provide an unprecedented opportunity to "genomicise" ecological model organisms and establish the genetic basis of quantitative traits in natural populations

    Optimization of Muscle Activity for Task-Level Goals Predicts Complex Changes in Limb Forces across Biomechanical Contexts

    Get PDF
    Optimality principles have been proposed as a general framework for understanding motor control in animals and humans largely based on their ability to predict general features movement in idealized motor tasks. However, generalizing these concepts past proof-of-principle to understand the neuromechanical transformation from task-level control to detailed execution-level muscle activity and forces during behaviorally-relevant motor tasks has proved difficult. In an unrestrained balance task in cats, we demonstrate that achieving task-level constraints center of mass forces and moments while minimizing control effort predicts detailed patterns of muscle activity and ground reaction forces in an anatomically-realistic musculoskeletal model. Whereas optimization is typically used to resolve redundancy at a single level of the motor hierarchy, we simultaneously resolved redundancy across both muscles and limbs and directly compared predictions to experimental measures across multiple perturbation directions that elicit different intra- and interlimb coordination patterns. Further, although some candidate task-level variables and cost functions generated indistinguishable predictions in a single biomechanical context, we identified a common optimization framework that could predict up to 48 experimental conditions per animal (n = 3) across both perturbation directions and different biomechanical contexts created by altering animals' postural configuration. Predictions were further improved by imposing experimentally-derived muscle synergy constraints, suggesting additional task variables or costs that may be relevant to the neural control of balance. These results suggested that reduced-dimension neural control mechanisms such as muscle synergies can achieve similar kinetics to the optimal solution, but with increased control effort (≈2×) compared to individual muscle control. Our results are consistent with the idea that hierarchical, task-level neural control mechanisms previously associated with voluntary tasks may also be used in automatic brainstem-mediated pathways for balance

    In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae

    Get PDF
    BACKGROUND: Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). RESULTS: Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. CONCLUSION: We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)
    corecore