1,711 research outputs found

    Human myiasis in Ecuador.

    Get PDF
    We review epidemiological and clinical data on human myiasis from Ecuador, based on data from the Ministry of Public Health (MPH) and a review of the available literature for clinical cases. The larvae of four flies, Dermatobia hominis, Cochliomyia hominivorax, Sarcophaga haemorrhoidalis, and Lucilia eximia, were identified as the causative agents in 39 reported clinical cases. The obligate D. hominis, causing furuncular lesions, caused 17 (43.5%) cases distributed along the tropical Pacific coast and the Amazon regions. The facultative C. hominivorax was identified in 15 (38%) clinical cases, infesting wound and cavitary lesions including orbital, nasal, aural and vaginal, and occurred in both subtropical and Andean regions. C. hominivorax was also identified in a nosocomial hospital-acquired wound. Single infestations were reported for S. haemorrhoidalis and L. eximia. Of the 39 clinical cases, 8 (21%) occurred in tourists. Ivermectin, when it became available, was used to treat furuncular, wound, and cavitary lesions successfully. MPH data for 2013–2015 registered 2,187 cases of which 54% were reported in men; 46% occurred in the tropical Pacific coast, 30% in the temperate Andes, 24% in the tropical Amazon, and 0.2% in the Galapagos Islands. The highest annual incidence was reported in the Amazon (23 cases/100,000 population), followed by Coast (5.1/100,000) and Andes (4.7/100,000). Human myiasis is a neglected and understudied ectoparasitic infestation, being endemic in both temperate and tropical regions of Ecuador. Improved education and awareness among populations living in, visitors to, and health personnel working in high-risk regions, is required for improved epidemiological surveillance, prevention, and correct diagnosis and treatment

    Sensitivity analysis of the input parameters of a physical based ductile failure model of Ti-6Al-4V for the prediction of surface integrity

    Get PDF
    In machining of Ti-6Al-4V, it is commonly reported the appearance of segmented chip produced by adiabatic shearing (at high cutting speeds) and lack of ductility (at low cutting speeds). Moreover, machining is a manufacturing process that is based on applying external energy to the workpiece to produce a separation of a material layer. Thus, to analyze the physics involved in the new surface generation and in the chip segmentation process, it is necessary to apply ductile failure models. However, the characterization of fracture models in machining conditions (temperature, strain rate, stress triaxiality, Lode angle etc.) is an arduous task. Therefore, to define a ductile failure model applicable to machining it is almost inevitable to apply inverse simulations strategies to obtain reliable results in the not tested conditions. Nevertheless, there is few information about the influence of the input parameters of ductile failure model in fundamental outputs and even less in surface integrity aspects. The aim of this research was to conduct a sensitivity analysis of the influence of the input parameters of a physical based ductile failure model not only in fundamental variables (forces, temperatures and chip morphology) but also on surface integrity (surface drag). To this end, a subroutine was developed for the ductile failure model and it was implemented in the Finite Element Method (FEM) software AdvantEdge. Subsequently, using a statistical software and the Design of Experiments (DOE) technique the influence of the input parameters of the failure model on the outputs was analyzed

    Self-administration of adrenaline for anaphylaxis during in-hospital food challenges improves health-related quality of life

    Get PDF
    Objective To assess the impact of anaphylaxis on health-related quality of life (HRQL) and self-efficacy in food-allergic patients undergoing in-hospital food challenge. Design Secondary analysis of a randomised controlled trial. Setting Specialist allergy centre. Patients Peanut-allergic young people aged 8–16 years. Interventions Double-blind, placebo-controlled food challenge to peanut, with HRQL and self-efficacy assessed using validated questionnaire, approximately 2 weeks prior to and 2 weeks after challenge. Where possible, anaphylaxis was treated with self-injected adrenaline (epinephrine). Main outcome measures Change in HRQL and self-efficacy. Results 56 participants had reactions at food challenge, of whom 16 (29%) had anaphylaxis. Overall, there was an improvement in HRQL (mean 2.6 points (95% CI 0.3 to 4.8); p=0.030) and self-efficacy (mean 4.1 points (95% CI 2.4 to 5.9); p<0.0001), independent of whether anaphylaxis occurred. Parents also reported improved HRQL (mean 10.3 points (95% CI 5.9 to 14.7); p<0.0001). We found evidence of discordance between the improvement in HRQL and self-efficacy as reported by young people and that perceived by parents in their child. Conclusions Anaphylaxis at food challenge, followed by self-administration of injected adrenaline, was associated with an increase in HRQL and self-efficacy in young people with peanut allergy. We found no evidence that the occurrence of anaphylaxis had a detrimental effect. Young people should be encouraged to self-administer adrenaline using their autoinjector device to treat anaphylaxis at in-hospital challenge. Trial registration number NCT0214971

    Symbiodinium biogeography tracks environmental patterns rather than host genetics in a key Caribbean reef-builder, Orbicella annularis

    Get PDF
    This is the final version of the article. Available from the Royal Society via the DOI in this record.The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described.This project was funded primarily by an NERC grant, no. NE/E010393/1 (J.R.S. and P.J.M.), European Union FP7 project Future of Reefs in a Changing Environment (FORCE) under grant agreement no. 244161 (P.J.M. and J.R.S.) and a University of Exeter studentship (E.V.K.)

    Conformational flexibility and molecular interactions of an archaeal homologue of the Shwachman-Bodian-Diamond syndrome protein

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Defects in the human Shwachman-Bodian-Diamond syndrome (SBDS) protein-coding gene lead to the autosomal recessive disorder characterised by bone marrow dysfunction, exocrine pancreatic insufficiency and skeletal abnormalities. This protein is highly conserved in eukaryotes and archaea but is not found in bacteria. Although genomic and biophysical studies have suggested involvement of this protein in RNA metabolism and in ribosome biogenesis, its interacting partners remain largely unknown. Results We determined the crystal structure of the SBDS orthologue from Methanothermobacter thermautotrophicus (mthSBDS). This structure shows that SBDS proteins are highly flexible, with the N-terminal FYSH domain and the C-terminal ferredoxin-like domain capable of undergoing substantial rotational adjustments with respect to the central domain. Affinity chromatography identified several proteins from the large ribosomal subunit as possible interacting partners of mthSBDS. Moreover, SELEX (Systematic Evolution of Ligands by EXponential enrichment) experiments, combined with electrophoretic mobility shift assays (EMSA) suggest that mthSBDS does not interact with RNA molecules in a sequence specific manner. Conclusion It is suggested that functional interactions of SBDS proteins with their partners could be facilitated by rotational adjustments of the N-terminal and the C-terminal domains with respect to the central domain. Examination of the SBDS protein structure and domain movements together with its possible interaction with large ribosomal subunit proteins suggest that these proteins could participate in ribosome function.Published versio

    Immunolocalization of dually phosphorylated MAPKs in dividing root meristem cells of Vicia faba, Pisum sativum, Lupinus luteus and Lycopersicon esculentum

    Get PDF
    Key message In plants, phosphorylated MAPKs display constitutive nuclear localization; however, not all studied plant species show co-localization of activated MAPKs to mitotic microtubules. Abstract The mitogen-activated protein kinase (MAPK) signaling pathway is involved not only in the cellular response to biotic and abiotic stress but also in the regulation of cell cycle and plant development. The role of MAPKs in the formation of a mitotic spindle has been widely studied and the MAPK signaling pathway was found to be indispensable for the unperturbed course of cell division. Here we show cellular localization of activated MAPKs (dually phosphorylated at their TXY motifs) in both interphase and mitotic root meristem cells of Lupinus luteus, Pisum sativum, Vicia faba (Fabaceae) and Lycopersicon esculentum (Solanaceae). Nuclear localization of activated MAPKs has been found in all species. Colocalization of these kinases to mitotic microtubules was most evident in L. esculentum, while only about 50 % of mitotic cells in the root meristems of P. sativum and V. faba displayed activated MAPKs localized to microtubules during mitosis. Unexpectedly, no evident immunofluorescence signals at spindle microtubules and phragmoplast were noted in L. luteus. Considering immunocytochemical analyses and studies on the impact of FR180204 (an inhibitor of animal ERK1/2) on mitotic cells, we hypothesize that MAPKs may not play prominent role in the regulation of microtubule dynamics in all plant species

    Evolution of Th2 responses : Characterization of IL-4/13 in sea bass (Dicentrarchus labrax L.) and studies of expression and biological activity

    Get PDF
    Acknowledgements This research was funded by the European Commission under the 7th Framework Programme for Research and Technological Development (FP7) of the European Union (Grant Agreement 311993 TARGETFISH). T.W. received funding from the MASTS pooling initiative (The Marine Alliance for Science and Technology for Scotland). MASTS is funded by the Scottish Funding Council (grant reference number HR09011) and contributing institutions.Peer reviewedPublisher PD
    corecore