50 research outputs found

    DADOS-Survey: an open-source application for CHERRIES-compliant Web surveys

    Get PDF
    BACKGROUND: The Internet has been increasingly utilized in biomedical research. From online searching for literature to data sharing, the Internet has emerged as a primary means of research for many physicians and scientists. As a result, Web-based surveys have been employed as an alternative to traditional, paper-based surveys. We describe DADOS-Survey, an open-source Web-survey application developed at our institution that, to the best of our knowledge, is the first to be compliant with the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). DADOS-Survey was designed with usability as a priority, allowing investigators to design and execute their own studies with minimal technical difficulties in doing so. RESULTS: To date, DADOS-Survey has been successfully implemented in five Institutional Review Board-approved studies conducted by various departments within our academic center. Each of these studies employed a Web-survey design as their primary methodology. Our initial experience indicates that DADOS-Survey has been used with relative ease by each of the investigators and survey recipients. This has been further demonstrated through formal and field usability testing, during which time suggestions for improvement were incorporated into the software design. CONCLUSION: DADOS-Survey has the potential to have an important role in the future direction of Web-survey administration in biomedical research. This CHERRIES-compliant application is tailored to the emerging requirements of quality data collection in medicine

    Onset of the aerobic nitrogen cycle during the Great Oxidation Event

    Get PDF
    The rise of oxygen on the early Earth (about 2.4 billion years ago)1 caused a reorganization of marine nutrient cycles2, 3, including that of nitrogen, which is important for controlling global primary productivity. However, current geochemical records4 lack the temporal resolution to address the nature and timing of the biogeochemical response to oxygenation directly. Here we couple records of ocean redox chemistry with nitrogen isotope (15N/14N) values from approximately 2.31-billion-year-old shales5 of the Rooihoogte and Timeball Hill formations in South Africa, deposited during the early stages of the first rise in atmospheric oxygen on the Earth (the Great Oxidation Event)6. Our data fill a gap of about 400 million years in the temporal 15N/14N record4 and provide evidence for the emergence of a pervasive aerobic marine nitrogen cycle. The interpretation of our nitrogen isotope data in the context of iron speciation and carbon isotope data suggests biogeochemical cycling across a dynamic redox boundary, with primary productivity fuelled by chemoautotrophic production and a nitrogen cycle dominated by nitrogen loss processes using newly available marine oxidants. This chemostratigraphic trend constrains the onset of widespread nitrate availability associated with ocean oxygenation. The rise of marine nitrate could have allowed for the rapid diversification and proliferation of nitrate-using cyanobacteria and, potentially, eukaryotic phytoplankton

    Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship
    corecore