54 research outputs found

    Intracellular Serine Protease Inhibitor SERPINB4 Inhibits Granzyme M-Induced Cell Death

    Get PDF
    Granzyme-mediated cell death is the major pathway for cytotoxic lymphocytes to kill virus-infected and tumor cells. In humans, five different granzymes (i.e. GrA, GrB, GrH, GrK, and GrM) are known that all induce cell death. Expression of intracellular serine protease inhibitors (serpins) is one of the mechanisms by which tumor cells evade cytotoxic lymphocyte-mediated killing. Intracellular expression of SERPINB9 by tumor cells renders them resistant to GrB-induced apoptosis. In contrast to GrB, however, no physiological intracellular inhibitors are known for the other four human granzymes. In the present study, we show that SERPINB4 formed a typical serpin-protease SDS-stable complex with both recombinant and native human GrM. Mutation of the P2-P1-P1′ triplet in the SERPINB4 reactive center loop completely abolished complex formation with GrM and N-terminal sequencing revealed that GrM cleaves SERPINB4 after P1-Leu. SERPINB4 inhibited GrM activity with a stoichiometry of inhibition of 1.6 and an apparent second order rate constant of 1.3×104 M−1s−1. SERPINB4 abolished cleavage of the macromolecular GrM substrates α-tubulin and nucleophosmin. Overexpression of SERPINB4 in tumor cells inhibited recombinant GrM-induced as well as NK cell-mediated cell death and this inhibition depended on the reactive center loop of the serpin. As SERPINB4 is highly expressed by squamous cell carcinomas, our results may represent a novel mechanism by which these tumor cells evade cytotoxic lymphocyte-induced GrM-mediated cell death

    Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH)

    Get PDF
    Background: ur current understanding of biofilms indicates that these structures are typically composed of many different microbial species. However, the lack of reliable techniques for the discrimination of each population has meant that studies focusing on multi-species biofilms are scarce and typically generate qualitative rather than quantitative data.Methodology/principal findings: we employ peptide nucleic acid fluorescence in situ hybridization (PNA FISH) methods to quantify and visualize mixed biofilm populations. As a case study, we present the characterization of Salmonella enterica/Listeria monocytogenes/Escherichia coli single, dual and tri-species biofilms in seven different support materials. Ex-situ, we were able to monitor quantitatively the populations of ~56 mixed species biofilms up to 48 h, regardless of the support material. In situ, a correct quantification remained more elusive, but a qualitative understanding of biofilm structure and composition is clearly possible by confocal laser scanning microscopy (CLSM) at least up to 192 h. Combining the data obtained from PNA FISH/CLSM with data from other established techniques and from calculated microbial parameters, we were able to develop a model for this tri-species biofilm. The higher growth rate and exopolymer production ability of E. coli probably led this microorganism to outcompete the other two [average cell numbers (cells/cm2) for 48 h biofilm: E. coli 2,1×108 (±2,4×107); L. monocytogenes 6,8×107 (±9,4×106); and S. enterica 1,4×106 (±4,1×105)]. This overgrowth was confirmed by CSLM, with two well-defined layers being easily identified: the top one with E. coli, and the bottom one with mixed regions of L. monocytogenes and S. enterica.Significance: while PNA FISH has been described previously for the qualitative study of biofilm populations, the present investigation demonstrates that it can also be used for the accurate quantification and spatial distribution of species in polymicrobial communities. Thus, it facilitates the understanding of interspecies interactions and how these are affected by changes in the surrounding environmen

    Automatic breath-to-breath analysis of nocturnal polysomnographic recordings

    No full text
    Diagnosis of sleep-disordered breathing is based on the presence of an abnormal breathing pattern during sleep. In this study, an algorithm was developed for the offline breath-to-breath analysis of the nocturnal respiratory recordings. For that purpose, respiratory signals (nasal airway pressure, thoracic and abdominal movements) were divided into half waves using period amplitude analysis. Individual breaths were characterized by the parameters of the half waves (duration, amplitude, and slope). These values can be used to discriminate between normal and abnormal breaths. This algorithm was applied to six polysomnographic recordings to distinguish abnormal breathing events (apneas and hypopneas). The algorithm was robust for the identification of breaths (sensitivity = 96.8%, positive prediction value (PPV) = 99.5%). The detection of apneas and hypopneas was compared to the manual scoring of two experienced sleep technicians: sensitivity was, respectively, 89.2 and 88.9%, PPV was 54.1 and 59.3%. The classification of apneas into central, obstructive, or mixed was in concordance with the observers in 68% of the apneas. Although the algorithm tended to detect more hypopneas than the clinical standard, this study shows that the extraction of breath-to-breath parameters is useful for detection of abnormal respiratory events and provides a basis for further characterization of these events

    Daily Intravoxel Incoherent Motion (IVIM) In Prostate Cancer Patients During MR-Guided Radiotherapy-A Multicenter Study.

    Get PDF
    PURPOSE: Daily quantitative MR imaging during radiotherapy of cancer patients has become feasible with MRI systems integrated with linear accelerators (MR-linacs). Quantitative images could be used for treatment response monitoring. With intravoxel incoherent motion (IVIM) MRI, it is possible to acquire perfusion information without the use of contrast agents. In this multicenter study, daily IVIM measurements were performed in prostate cancer patients to identify changes that potentially reflect response to treatment. MATERIALS AND METHODS: Forty-three patients were included, treated with 20 fractions of 3 Gy on a 1.5 T MR-linac. IVIM measurements were performed on each treatment day. The diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*) were calculated based on the median signal intensities in the non-cancerous prostate and the tumor. Repeatability coefficients (RCs) were determined based on the first two treatment fractions. Separate linear mixed-effects models were constructed for the three IVIM parameters. RESULTS: In total, 726 fractions were analyzed. Pre-treatment average values, measured on the first fraction before irradiation, were 1.46 × 10-3 mm2/s, 0.086, and 28.7 × 10-3 mm2/s in the non-cancerous prostate and 1.19 × 10-3 mm2/s, 0.088, and 28.9 × 10-3 mm2/s in the tumor, for D, f, and D*, respectively. The repeatability coefficients for D, f, and D* in the non-cancerous prostate were 0.09 × 10-3 mm2/s, 0.05, and 15.3 × 10-3 mm2/s. In the tumor, these values were 0.44 × 10-3 mm2/s, 0.16, and 76.4 × 10-3 mm2/s. The mixed effects analysis showed an increase in D of the tumors over the course of treatment, while remaining stable in the non-cancerous prostate. The f and D* increased in both the non-cancerous prostate and tumor. CONCLUSIONS: It is feasible to perform daily IVIM measurements on an MR-linac system. Although the repeatability coefficients were high, changes in IVIM perfusion parameters were measured on a group level, indicating that IVIM has potential for measuring treatment response
    corecore