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Purpose: Daily quantitative MR imaging during radiotherapy of cancer patients has
become feasible with MRI systems integrated with linear accelerators (MR-linacs).
Quantitative images could be used for treatment response monitoring. With intravoxel
incoherent motion (IVIM) MRI, it is possible to acquire perfusion information without the use
of contrast agents. In this multicenter study, daily IVIM measurements were performed in
prostate cancer patients to identify changes that potentially reflect response to treatment.

Materials and Methods: Forty-three patients were included, treated with 20 fractions of
3 Gy on a 1.5 T MR-linac. IVIM measurements were performed on each treatment day.
The diffusion coefficient (D), perfusion fraction (f), and pseudo-diffusion coefficient (D*)
were calculated based on the median signal intensities in the non-cancerous prostate and
the tumor. Repeatability coefficients (RCs) were determined based on the first two
treatment fractions. Separate linear mixed-effects models were constructed for the
three IVIM parameters.

Results: In total, 726 fractions were analyzed. Pre-treatment average values, measured
on the first fraction before irradiation, were 1.46 × 10−3 mm2/s, 0.086, and 28.7 × 10−3

mm2/s in the non-cancerous prostate and 1.19 × 10−3 mm2/s, 0.088, and 28.9 × 10−3

mm2/s in the tumor, for D, f, and D*, respectively. The repeatability coefficients for D, f, and
D* in the non-cancerous prostate were 0.09 × 10−3 mm2/s, 0.05, and 15.3 × 10−3 mm2/s.
In the tumor, these values were 0.44 × 10−3 mm2/s, 0.16, and 76.4 × 10−3 mm2/s. The
mixed effects analysis showed an increase in D of the tumors over the course of treatment,
August 2021 | Volume 11 | Article 7059641

https://www.frontiersin.org/articles/10.3389/fonc.2021.705964/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705964/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705964/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.705964/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:u.vd.heide@nki.nl
https://doi.org/10.3389/fonc.2021.705964
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.705964
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.705964&domain=pdf&date_stamp=2021-08-13


Kooreman et al. Daily IVIM During MR-Guided Radiotherapy

Frontiers in Oncology | www.frontiersin.org
while remaining stable in the non-cancerous prostate. The f and D* increased in both the
non-cancerous prostate and tumor.

Conclusions: It is feasible to perform daily IVIM measurements on an MR-linac
system. Although the repeatability coefficients were high, changes in IVIM perfusion
parameters were measured on a group level, indicating that IVIM has potential for
measuring treatment response.
Keywords: MR-linac, intravoxel incoherent motion, quantitative MRI, prostate cancer, treatment response
INTRODUCTION

Integrated MR-linac systems combine an MRI scanner with a
linear accelerator, allowing acquisition of MRI scans of the
patient on each treatment fraction of a radiotherapy (RT)
course. On two commercially available systems, acquisition of
quantitative MRI was shown to be feasible (1, 2). Daily
monitoring of radiotherapy response using quantitative MR
imaging biomarkers has become more readily available with
the increasing number of MR-linac systems in centers
worldwide (3).

Quantitative MRI enables the characterization of tissue
properties in a quantitative manner. By measuring this on a
daily basis, two exciting ideas for personalized radiotherapy
come within reach. The first is to adapt the dose distribution
of a treatment plan on a daily basis according to the changing
patient biology (4), and the second is to base the total dose that a
patient receives on the biological response (5). For this to become
clinical practice, the performance of MR-linacs regarding
quantitative MRI first needs to be validated (6). Furthermore,
it needs to be established if daily changes in imaging biomarkers
are detectable and if these changes are associated with
clinical outcome.

Perfusion is of interest as it is related to tumor hypoxia, which
is a prognostic marker for overall survival in a number of tumor
sites (7). An established method for imaging perfusion and
permeability in cancer is dynamic contrast-enhanced (DCE)
MRI (8). However, as this requires the injection of an MRI
contrast agent, DCE MRI is not suitable for daily treatment
response monitoring. An alternative to DCE MRI is intravoxel
incoherent motion (IVIM) imaging (9), which is a technique
based on diffusion-weighted MRI (DWI). In DWI, MR images are
sensitized to random motion by the application of strong
diffusion-weighting gradients. The amount of diffusion
weighting is expressed with the b-value, where a higher b-value
indicates stronger diffusion weighting. Typically two or three
images are acquired with a different b-value, from which the
apparent diffusion coefficient (ADC) is calculated using a mono-
exponential model (10). With IVIM, additional low b-values are
acquired in order to extract information about perfusion (11). By
fitting a bi-exponential model, IVIM allows for the determination
of the tissue diffusion coefficient D, the perfusion or blood fraction
f, and the pseudo-diffusion coefficient D*, thereby separating
perfusion and diffusion effects. In prostate cancer, D (and ADC)
parameters were shown to be related to cell density (12, 13). The
2

IVIM parameter f was shown to correlate with blood vessel
density in (12).

Changes in IVIM parameters during treatment might provide
valuable information about treatment response (4). For cervical
cancer, early increases in f have been associated with good
response (14, 15). Similarly, in head-and-neck cancer patients,
larger reductions in f and higher D values were observed in
patients with regional failure compared to patients with regional
control (16). In another study with weekly measurements in
head-and-neck cancer patients, a significant increase was found
in D in complete responders, but no significant differences in f
and D* were found between responders and non-responders
(17). Daily IVIM measurements in patients with brain
metastases showed an increase in D in responders and a
decrease in non-responders (18). No significant differences
were observed for f and D* between responders and non-
responders. For prostate cancer, only DWI has been
investigated as a potential biomarker for treatment response.
Two studies have shown an increase in the ADC during radiation
treatment (19, 20). Therefore, the aim of this multicenter study
was to perform daily IVIM measurements in prostate cancer
patients to identify if time trends appear in IVIM parameters,
which might have potential for treatment response monitoring.
MATERIALS AND METHODS

Patients
Forty-three patients from three institutes with intermediate- and
high-risk biopsy-proven prostate cancer were included in this
study according to the EAU risk classification (21). Twelve
patients were included in the first institute, 8 in the second,
and 23 in the third. All patients received the same treatment of 20
fractions of 3 Gy over the course of 4 to 5 weeks on a 1.5 T MR-
linac system (Unity, Elekta AB, Sweden). In addition, 34 patients
also received androgen deprivation therapy (ADT). Patient
demographics are presented in Table 1. The study was
approved by the institutional review boards and written
informed consent was obtained from all patients.

MRI
During each treatment fraction, an anatomical T2-weighted scan
for position verification and an IVIM scan were acquired before
the start of irradiation. Thus, the scans on the day of the first
fraction provide pre-treatment information. All institutes used
August 2021 | Volume 11 | Article 705964
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the same protocol for the IVIM scan. For the development of the
IVIM protocol, previously published guidelines were followed
for ADC measurements on the Unity MR-linac (22). A
maximum b-value of 500 s/mm2 was recommended to
compensate for the limited SNR of the Unity MR-linac and to
measure at a diffusion time that is comparable to that of
diagnostic systems (22). An extra b-value of 30 s/mm2 was
added to be able to measure IVIM parameters. The averages of
the b = 0 s/mm2 image were increased to eight. Sequence
parameters can be found in Table 2.

Image Registration and Delineation
The T2-weighted images of each fraction were registered rigidly
to the T2-weighted image of the first fraction within a box around
the prostate using the correlation ratio as a cost function. This
rigid registration allowed for translations and rotations. Next, the
b = 0 s/mm2 images were registered to the T2-weighted image
acquired during the same fraction. All registrations were checked
visually and improved manually if required.

The prostate and all visible tumors were delineated on the T2-
weighted image of the first fraction. The tumors were delineated
while consulting diagnostic multi-parametric scans acquired
according to the PI-RADS v2.1 guideline (23). Tumor
delineations were excluded from the prostate delineation to
obtain the non-cancerous prostate region. Only the tumor
Frontiers in Oncology | www.frontiersin.org 3
focus with the largest volume was used for the analysis in case
of multiple foci per patient. All delineations were propagated to
the IVIM scans in order to extract quantitative values. Due to the
use of an EPI readout, severe susceptibility artifacts could be
present in some IVIM images caused by passing air in the
rectum. Therefore, the b = 500 s/mm2 images were checked
visually and fractions where air was present inside the
propagated contours were excluded. The median values of the
signal intensities of the voxels inside the resulting delineations
were used for calculation of the IVIM parameters.

IVIM Parameter Calculation
The IVIM parameters were calculated by performing a bi-
exponential fit in a segmented fashion to increase robustness (24)

Sb = S0 fe−b D* + 1 − fð Þe−b D
� �

:

The diffusion coefficient D was calculated using image
intensities at the two highest b-values (150 and 500 s/mm2)
under the assumption that the contribution of perfusion to the
signal at these b-values is negligible (11) using

D =
ln S150=S500ð Þ
b500 − b150ð Þ :

Here, Sb is the signal intensity in the image acquired at a
certain b-value. Next, the perfusion fraction f was calculated
using the previously calculated D by extrapolating the
contribution of the diffusion fraction to S0 as follows:

f = 1 − S150=S0ð Þe b150  −   b0ð ÞD :

Finally, D* was calculated using the obtained values of D and
f in combination with the signal intensity at the lowest two
b-values (0 and 30 s/mm2)

D* = −
1
b30

ln
S30=S0 − 1 − fð Þe−b30D

f

� �
:

Statistics
To establish if treatment effects could be foundon apopulation level,
for each fraction, themean and the standard error of themean of the
IVIM parameters of all patients were determined for the tumor and
non-cancerous prostate. The difference between pre-treatment
values of tumor and non-cancerous prostate was tested with a
two-sided paired t-test with a significance level of a = 0.05.

To determine which changes in IVIM parameters can be
attributed to a treatment effect, the repeatability coefficient (RC)
of each IVIM parameter was calculated using RC = 1:96ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2   wVar

p
, where wVar is the mean within-patient variance

(25, 26). The wVar was determined for the non-cancerous
prostate and tumor based on the measurements from the first
and second treatment fraction, assuming a negligible influence of
the single 3 Gy dose that was received in between. The RC values
were related to the size of the ROIs.

To analyze the evolution over time, linear mixed effects
analysis was performed using R (v3.6.1) and the lme4
TABLE 2 | Acquisition parameters of the IVIM sequence.

Sequence type Single-shot echo planar image (ss-EPI)
Field of view (mm3) 430 × 430 × 60
Acquired voxel size (mm3) 4 × 4 × 4
TR/TE (ms) 2,960/82
b-values (averages) (s/mm2) 0 (8), 30 (8), 150 (8), 500 (16)
Gradient timings D/d (ms) 41/20
Fat suppression SPAIR
SENSE factor 2.3 (left–right)
Phase encoding bandwidth (Hz/pixel) 32.9
Acquisition time (m:ss) 5:11
TABLE 1 | Patient demographics.

Age 73 (55–83)
iPSA (ng/ml) 8.5 (4.4–37.6)
ADT (months before start of radiation) 2 (0–11)
ISUP Grade Group
1 4
2 19
3 13
4 5
5 2
T-stage
T1a 1
T1c 9
T2a 11
T2b 1
T2c 12
T3a 7
T3b 2
iPSA, initial prostate-specific antigen; ADT, androgen deprivation therapy; ISUP Grade
Group, revised prostate cancer grading system introduced by the International Society of
Urological Pathology (ISUP). The median (range) is shown for age, iPSA, and ADT.
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package (27). Separate models were constructed for the D, f, and
D* parameters. Fixed effects were fraction (1–20), ROI (non-
cancerous prostate/tumor), ISUP group, ADT, and institute. The
ISUP scores were divided into a low (ISUP score 1 and 2) and
high (ISUP score 3,4, and 5) group. For ADT, the number of
months between the start of ADT and start of radiotherapy was
used. Patients were included as a random effect. ROIs were
modeled as a random effect nested within the patient. This
allows the model intercepts to vary among patients and among
ROIs within patients. The three models (for D, f, and D*) were
constructed separately using backwards elimination as
implemented by the step function from the lmerTest package
(28). All fixed effects, including their interaction with fraction, were
included in the full model. They were then eliminated one at a time
based on a significance level of a = 0.05, where the p-value was
calculated using an F-test based on Satterthwaite’s approximation.
RESULTS

For logistical and technical reasons, IVIM scans were missing
in 56 out of the total of 860 fractions. Of the remaining
804 fractions, 73 were excluded because of anatomical
Frontiers in Oncology | www.frontiersin.org 4
deformations or susceptibility distortions caused by the EPI
readout. Five were excluded because the patient moved
between the acquisition of different b-values. This left 726
fractions for analysis with a median number of 18 (range, 9–
20) available fractions per patient. In four patients, a tumor could
not be distinguished and was not delineated. For those patients,
the entire prostate region was analyzed as non-cancerous.
Figure 1 shows the IVIM parameter maps for six fractions
from a single patient.

IVIM scans were available for the first fraction in 35 patients.
The pre-treatment average and standard error of the mean of D
were 1.46 ± 0.02 × 10−3 mm2/s in the non-cancerous prostate,
which was significantly higher (p < 0.001) than in the tumor
(1.19 ± 0.04 × 10−3 mm2/s). The pre-treatment average and
standard error of the mean of f were 0.086 ± 0.005 in the non-
cancerous prostate and 0.088 ± 0.01 in the tumor. The pre-
treatment average and standard error of the mean of D* were
28.7 ± 1.4 × 10−3 mm2/s in the non-cancerous prostate and
28.9 ± 5.4 × 10−3 mm2/s in the tumor. The pre-treatment values
of f and D* were not significantly different between the non-
cancerous prostate and tumor.

The RC in the non-cancerous prostate was 0.09 × 10−3 mm2/s
for D, 0.05 for f, and 15.3 × 10−3 mm2/s for D*. In the tumor,
FIGURE 1 | Example of a prostate cancer patient. A voxel-wise map of the IVIM parameters is shown for six treatment fractions (fractions 1, 2, 5, 10, 15, and 20).
The prostate is delineated in red, and the tumor is delineated in green. The images are resampled to the reconstructed voxel sizes of the T2-weighted acquisition
(0.6 × 0.6 × 1.2 mm3). Note that during analysis, the voxels from inside the tumor delineation were excluded from the prostate delineation to create the non-
cancerous prostate.
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the RCs were 0.44 × 10−3 mm2/s, 0.16, and 76.4 × 10−3 mm2/s for
D, f, and D*, respectively. Figure 2 shows that the RC depends on
the size of the ROI. The median volume of the non-cancerous
prostate delineations was 24 (range, 6.5–88) cm3, whereas the
median volume of the tumor delineations was 1.0 (range, 0.3–
6.9) cm3. As shown in Figure 3D, the RC of D steeply increases
for volumes below 2 cm3, and Figures 2E, F show a similar
increase for f and D* for volumes below 4 cm3.

To analyze the evolution over time, mixed effects models were
constructed for each IVIM parameter. The set offixed effects and
regression coefficients for each parameter are listed in Table 3.
For D, these included ISUP groups (low/high, p-value = 0.003),
the ROI (non-cancerous prostate/tumor, p-value < 0.001), the
fraction (1-20, p-value < 0.001) and interaction terms between
ISUP group and fraction (p-value = 0.01) and between ROI and
fraction (p-value < 0.001). Figure 3 shows the mean of the D for
each fraction for the low and high ISUP groups. The effect size
for the difference between the group of patients with a high ISUP
score compared to patients with a low score was −0.10 ± 0.03 ×
10−3 mm2/s. The D in the non-cancerous prostate was 0.24 ±
0.03 × 10−3 mm2/s higher than in the tumor. Both ISUP groups
and ROI had an interaction term with the fraction number,
meaning that the change in D over the course of treatment was
different for these groups. In the tumor, for patients with a low
Frontiers in Oncology | www.frontiersin.org 5
ISUP score, the tumor D increased 0.005 ± 0.001 × 10−3 mm2/s/
fraction, whereas for the group with a high ISUP score, the
increase was 0.007 ± 0.001 × 10−3 mm2/s/fraction. This reduces
the difference in the D between these groups over the course of
treatment: at the 20th fraction, the D as estimated from the
model in the tumors of the low ISUP group is increased to 1.38 ±
0.02 × 10−3 mm2/s and that in the high ISUP group is increased
to 1.33 ± 0.03 × 10−3 mm2/s.

For the perfusion fraction f, the significant fixed effects were
ROI (non-cancerous prostate/tumor, p-value = 0.03), the
fraction (1-20, p-value < 0.001), and the interaction between
fraction and institute (p-value = 0.04). As institute is part of the
interaction term, it was also added to the model as a fixed effect
(p-value = 0.06) (Table 3). The f values in the non-cancerous
prostate were 0.013 ± 0.006 higher than in the tumor. An average
increase per treatment fraction of 0.002 ± 0.0002 was found in
both the non-cancerous prostate and tumor for institutes 1 and
3. For institute 2, this increase was significantly lower (p-value =
0.01) at 0.001 ± 0.0005 per treatment fraction, which was the
only significant effect containing institute. Figure 4A shows the
mean f values per fraction grouped by ROI.

For the pseudo-diffusion coefficient D*, the significant fixed
effects were the fraction (1-20, p-value < 0.001) and ADT (months
before the start of treatment, p-value < 0.001) (Table 3). The D*
A B C

D E F

FIGURE 2 | The repeatability coefficients (RCs) of individual patients for the IVIM parameters based on the values from the tumor and non-cancerous prostate on
the first and second treatment fraction. Figures (A–C) show all data points while figures (D–F) show the same data but zommed in on the smaller volumes. In figures
(D–F), a vertical dashed line indicates the volume below which the RC steeply increases. This value is 2 cm3 in (D) and 4 cm3 in (E, F).
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decreased with -1.37 ± 0.35 mm2/s for every month of ADT. The
change in D* due to ADT was independent of treatment fraction.
The D* increased with 0.35 ± 0.09 × 10−3 mm2/s each fraction, in
both the non-cancerous prostate and the tumor. Figure 4B shows
the mean values per fraction grouped by ROI.

DISCUSSION

In this multicenter study, we acquired daily IVIM scans of
prostate cancer patients during radiotherapy treatment on
three 1.5 T MR-linac systems. IVIM parameters were
calculated from the median signal intensities of the tumor and
non-cancerous prostate. We analyzed the changes in these
Frontiers in Oncology | www.frontiersin.org 6
parameters over the course of the treatment. The diffusion
coefficient D showed an increase in the tumor, while the values
in the non-cancerous prostate remained unchanged. The
parameters f and D* increased in the tumor as well as in the
non-cancerous prostate.

The average pre-treatment D values in the non-cancerous
prostate are in line with values reported in the literature,
although the range of the reported values in the literature is
large: 0.16–1.78 × 10−3 mm2/s (29). For the tumor, our average
pre-treatment D (1.21 ± 0.04 × 10−3 mm2/s) is higher than
previously reported (range 0.13–1.06 × 10−3 mm2/s) (29). The
lower D in the tumor for the high ISUP group is consistent with
the literature (29).

The pre-treatment f and D* values in our study are within the
range that was previously reported in the literature (29). In their
meta-analysis, He et al. found no difference in f between the
tumor and the non-cancerous prostate, which is consistent with
our pre-treatment findings (29). However, in contrast to our
findings, they did find a difference in D* between the non-
cancerous prostate and tumor. A reason for this could be the
high variance in D* in the current study, in combination with the
small standardized mean difference of 0.29 × 10−3 mm2/s between
tumor and non-cancerous prostate reported by He et al. (29).

The RC depended on the size of the ROIs (30, 31). We
observed a strong increase in the RC with lower ROI sizes. The
mean RC for D in the tumor corresponded to 36% of the mean
value in the tumor. This means that a change of 36% would have
to occur in order to be significant. While this corresponds to
earlier reported values (26), such large changes are not expected
in prostate cancer. Van Schie et al. found a change on the group
level caused by radiotherapy of 20%, and Foltz et al. found a
change of 13% (19, 20). Other tumor sites may have larger
tumors, which would reduce their RC, or exhibit larger changes
throughout treatment and hold therefore more potential for
treatment response monitoring using DWI or IVIM. The same
holds for f and D*, where the RCs in the tumor were even higher.
A B

FIGURE 3 | Average of D of all patients over the course of radiotherapy treatment. (A) shows the average for patients in the low ISUP group, and (B) shows the
average for patients in the high ISUP group. Error bars indicate the standard error of the mean. As indicated by the result of the mixed effects model, the increase in
the high ISUP group (B) is steeper than in the low ISUP group (A).
TABLE 3 | Model parameters of the mixed effects models for D, f, and D*.

Regression
coefficients (b)

Std. error

Model for D (10-3 mm2/s)

Intercept (b0) 1.284 0.025
Fraction (per one unit) 0.005 0.001
ISUP high (versus ISUP low) -0.100 0.032
ROI non-cancerous prostate (versus tumor) 0.242 0.026
Interaction Fraction – ISUP high 0.003 0.001
Interaction Fraction – ROI non-cancerous prostate -0.007 0.001

Model for f

Intercept (b0) 0.090 0.007
Fraction (per one unit) 0.002 0.0003
ROI non-cancerous prostate (versus tumor) 0.013 0.006
Institute 1 (versus institute 3) -0.011 0.010
Institute 2 (versus institute 3) 0.021 0.012
Interaction Fraction – Institute 1 -0.0006 0.0004
Interaction Fraction – Institute 2 -0.001 0.0006

Model for D* (10-3 mm2/s)

Intercept (b0) 36.6 1.71
Fraction (per one unit) 0.35 0.09
ADT (per one unit) -1.37 0.35
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All IVIM parameters, except for D of the non-cancerous
prostate, increased during treatment. Interestingly, for the high
ISUP group, D increased more during the treatment than for the
low ISUP group. This suggests that the cellularity at the end of
treatment was similar for both groups. Further work is needed to
establish if these observations are linked to treatment outcome.
The f and D* also showed an increase during treatment. For D*,
we saw an effect of hormonal therapy, where D* was reduced
slightly with an increasing duration of ADT before the start of
radiation treatment. This is consistent with a reduction in DCE
parameters, which is linked to devascularization in patients that
received ADT (32, 33). As the entire prostate gland is irradiated,
the overall increase in the f and D* values might be caused by an
inflammation response of the prostate (34), obscuring more
subtle differences that might be present between the tumor and
non-cancerous prostate.

A limitation of this study is the use of rigid registration tomatch
the scans from all fractions to the scan of the first fraction. This
type of registration cannot account for anatomical deformations
caused by, e.g., passing air in the rectum.Moreover, we saw that the
contrast of the T2-weighted images inside the prostate reduced
over the course of treatment, causing the tumor to disappear. This
reduction in contrast has been reported before (19, 20, 35), but
made it impossible to check the propagated tumor contours
visually in later fractions. Because these tumor volumes are
relatively small, a small mismatch could lead to a significant
difference in the tumor values. In an effort to reduce the
influence of small misregistrations, we calculated the IVIM
parameters based on the median values of the signal intensities
inside the delineations, thereby reducing the effect of outliers.

As indicated by the RCs, the noise in the IVIM acquisition
posed problems for voxel-based analysis, especially for the f and
D*. This can also be seen in the voxel-wise maps shown in
Figure 1, where holes appear in the D* maps. This happens when
due to noise, the logarithm that is used to calculate D* becomes
undefined. By using the median values of the signal intensities for
estimation of the parameters, the influence of noise was reduced.
Frontiers in Oncology | www.frontiersin.org 7
It must be noted that the RC was based on the first two
treatment fractions and therefore might include some treatment
effect. The RC denotes the smallest significant difference between
two measurements taken under identical conditions, with 95%
confidence (25). While it is useful for the comparison of the
precision of our measurements to previously reported studies, it
might not be the right metric to denote a significant change in a
time series. As there are multiple measurements per patient, a
small change compared to the pre-treatment value that is
consistent over time could be statistically significant even if
that change is smaller than the RC.

In conclusion, we have successfully acquired daily IVIM scans
in prostate cancer patients on the Unity MR-linac system. On a
group level, changes in IVIM parameters caused by radiation
treatment were found, indicating that it might be useful for
treatment response evaluation.
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