2,614 research outputs found

    The impact of heavy-quark loops on LHC dark matter searches

    Full text link
    If only tree-level processes are included in the analysis, LHC monojet searches give weak constraints on the dark matter-proton scattering cross section arising from the exchange of a new heavy scalar or pseudoscalar mediator with Yukawa-like couplings to quarks. In this letter we calculate the constraints on these interactions from the CMS 5.0/fb and ATLAS 4.7/fb searches for jets with missing energy including the effects of heavy-quark loops. We find that the inclusion of such contributions leads to a dramatic increase in the predicted cross section and therefore a significant improvement of the bounds from LHC searches.Comment: 12 pages, 1 table, 3 figures, v2: extended discussion and improved relic density calculation - matches published versio

    Intra-breath arterial oxygen oscillations detected by a fast oxygen sensor in an animal model of acute respiratory distress syndrome

    Get PDF
    Background There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking PO2 changes dynamically when it varies rapidly. For example, arterial PO2 (PaO2) can vary within the respiratory cycle in cyclical atelectasis (CA), where PaO2 is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these PaO2 oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). Methods We developed a fibreoptic PO2 sensor (<200 µm diameter), suitable for human use, that has a fast response time, and can measure PO2 continuously in blood. By altering the inspired fraction of oxygen (FIO2) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of PaO2 values in vivo. We also hypothesized that the sensor could measure rapid intra-breath PaO2 oscillations in a large animal model of ARDS. Results In the healthy animal models, PaO2 responses to changes in FIO2 were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of PaO2 values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected PaO2 oscillations, also at clinically relevant PaO2 levels close to 9 kPa. Conclusions We conclude that these fibreoptic PaO2 sensors have the potential to become a diagnostic tool for CA in ARDS

    Mean-Payoff Optimization in Continuous-Time Markov Chains with Parametric Alarms

    Full text link
    Continuous-time Markov chains with alarms (ACTMCs) allow for alarm events that can be non-exponentially distributed. Within parametric ACTMCs, the parameters of alarm-event distributions are not given explicitly and can be subject of parameter synthesis. An algorithm solving the ε\varepsilon-optimal parameter synthesis problem for parametric ACTMCs with long-run average optimization objectives is presented. Our approach is based on reduction of the problem to finding long-run average optimal strategies in semi-Markov decision processes (semi-MDPs) and sufficient discretization of parameter (i.e., action) space. Since the set of actions in the discretized semi-MDP can be very large, a straightforward approach based on explicit action-space construction fails to solve even simple instances of the problem. The presented algorithm uses an enhanced policy iteration on symbolic representations of the action space. The soundness of the algorithm is established for parametric ACTMCs with alarm-event distributions satisfying four mild assumptions that are shown to hold for uniform, Dirac and Weibull distributions in particular, but are satisfied for many other distributions as well. An experimental implementation shows that the symbolic technique substantially improves the efficiency of the synthesis algorithm and allows to solve instances of realistic size.Comment: This article is a full version of a paper accepted to the Conference on Quantitative Evaluation of SysTems (QEST) 201

    Announcing the Minderoo - Monaco Commission on Plastics and Human Health.

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Landrigan, P., Raps, H., Symeonides, C., Chiles, T., Cropper, M., Enck, J., Hahn, M., Hixson, R., Kumar, P., Mustapha, A., Park, Y., Spring, M., Stegeman, J., Thompson, R., Wang, Z., Wolff, M., Yousuf, A., & Dunlop, S. Announcing the Minderoo – Monaco Commission on Plastics and Human Health. Annals of Global Health, 88(1), (2022): 73, https://doi.org/10.5334/aogh.3916.Plastic is the signature material of our age. In the 75 years since large-scale production began in the aftermath of World War II, plastic has transformed our world, supported many of the most significant advances of modern civilization, and enabled breakthroughs in virtually every field of human endeavor. But plastic also poses great and growing dangers to human health and the environment, harms that fall disproportionately on the world’s poorest and most vulnerable populations. The extent and magnitude of these dangers are only beginning to be understood.The funding is from the Minderoo Foundation, the Centre Scientifique de Monaco, and the Prince Albert II of Monaco Foundation

    Electrically controlled long-distance spin transport through an antiferromagnetic insulator

    Full text link
    Spintronics uses spins, the intrinsic angular momentum of electrons, as an alternative for the electron charge. Its long-term goal is in the development of beyond-Moore low dissipation technology devices. Recent progress demonstrated the long-distance transport of spin signals across ferromagnetic insulators. Antiferromagnetically ordered materials are however the most common class of magnetic materials with several crucial advantages over ferromagnetic systems. In contrast to the latter, antiferromagnets exhibit no net magnetic moment, which renders them stable and impervious to external fields. In addition, they can be operated at THz frequencies. While fundamentally their properties bode well for spin transport, previous indirect observations indicate that spin transmission through antiferromagnets is limited to short distances of a few nanometers. Here we demonstrate the long-distance, over tens of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3), the most common antiferromagnetic iron oxide, exploiting the spin Hall effect for spin injection. We control the spin current flow by the interfacial spin-bias and by tuning the antiferromagnetic resonance frequency with an external magnetic field. This simple antiferromagnetic insulator is shown to convey spin information parallel to the compensated moment (N\'eel order) over distances exceeding tens of micrometers. This newly-discovered mechanism transports spin as efficiently as the net magnetic moments in the best-suited complex ferromagnets. Our results pave the way to ultra-fast, low-power antiferromagnet-insulator-based spin-logic devices that operate at room temperature and in the absence of magnetic fields

    The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population

    Get PDF
    Background: The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise,1 % to 70 % (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings: The investigated population (F10 lineage) contributed on average 11 % to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions: Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigate

    Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host

    Get PDF
    Schmallenberg virus (SBV) is an emerging orthobunyavirus of ruminants associated with outbreaks of congenital malformations in aborted and stillborn animals. Since its discovery in November 2011, SBV has spread very rapidly to many European countries. Here, we developed molecular and serological tools, and an experimental in vivo model as a platform to study SBV pathogenesis, tropism and virus-host cell interactions. Using a synthetic biology approach, we developed a reverse genetics system for the rapid rescue and genetic manipulation of SBV. We showed that SBV has a wide tropism in cell culture and “synthetic” SBV replicates in vitro as efficiently as wild type virus. We developed an experimental mouse model to study SBV infection and showed that this virus replicates abundantly in neurons where it causes cerebral malacia and vacuolation of the cerebral cortex. These virus-induced acute lesions are useful in understanding the progression from vacuolation to porencephaly and extensive tissue destruction, often observed in aborted lambs and calves in naturally occurring Schmallenberg cases. Indeed, we detected high levels of SBV antigens in the neurons of the gray matter of brain and spinal cord of naturally affected lambs and calves, suggesting that muscular hypoplasia observed in SBV-infected lambs is mostly secondary to central nervous system damage. Finally, we investigated the molecular determinants of SBV virulence. Interestingly, we found a biological SBV clone that after passage in cell culture displays increased virulence in mice. We also found that a SBV deletion mutant of the non-structural NSs protein (SBVΔNSs) is less virulent in mice than wild type SBV. Attenuation of SBV virulence depends on the inability of SBVΔNSs to block IFN synthesis in virus infected cells. In conclusion, this work provides a useful experimental framework to study the biology and pathogenesis of SBV

    Constraints on Nucleon Decay via "Invisible" Modes from the Sudbury Neutrino Observatory

    Get PDF
    Data from the Sudbury Neutrino Observatory have been used to constrain the lifetime for nucleon decay to ``invisible'' modes, such as n -> 3 nu. The analysis was based on a search for gamma-rays from the de-excitation of the residual nucleus that would result from the disappearance of either a proton or neutron from O16. A limit of tau_inv > 2 x 10^{29} years is obtained at 90% confidence for either neutron or proton decay modes. This is about an order of magnitude more stringent than previous constraints on invisible proton decay modes and 400 times more stringent than similar neutron modes.Comment: Update includes missing efficiency factor (limits change by factor of 2) Submitted to Physical Review Letter
    corecore