34 research outputs found

    Impact of enteral protein supplementation in premature infants

    Get PDF
    David M Barrus1, Joann Romano-Keeler2, Christopher Carr3, Kira Segebarth4, Betty Claxton2, William F Walsh2, Paul J Flakoll51Department of Neonatology, Saint Francis Hospital–Bartlett, Memphis, TN, 2Department of Pediatrics, Vanderbilt Medical Center, Nashville, TN, 3Department of Surgery, Naval Hospital Bremerton, Bremerton, WA, 4Pediatric and Diabetes Specialists, Carolinas Medical Center, Charlotte, NC, 5Department of Surgery, Vanderbilt Medical Center, Nashville, TN, USAObjective: The quantity of enteral protein supplementation required by premature infants to optimize growth has not been determined. This study compares the growth of premature infants fed the current standard intake of protein (3.5 g/kg/day) with the growth of those fed a higher amount (4.0 g/kg/day).Study design: Fifty-two infants <1500 g and <33 weeks gestational age participated in a blinded, single-center, prospective randomized control trial to compare growth between two groups of different protein-intake levels. Primary outcomes were average daily weight gain (g/kg/day), head-circumference (cm/kg/week) and linear growth velocity (cm/kg/week). Secondary outcomes were serum indices of protein tolerance and plasma amino acid concentrations.Results: Infants receiving higher amounts of protein had higher rates of growth for body weight (18.2 ± 0.7 versus 16.2 ± 1.0 g/kg/day; P < 0.05) and head circumference (0.87 ± 0.08 versus 0.62 ± 0.07 cm/kg/week; P < 0.05), with no differences in blood protein or plasma amino acid concentrations. Length of hospital stay was 14 days shorter for the higher-protein group (51.4 ± 4.0 versus 65.9 ± 6.3 days).Conclusion: Increasing premature infant enteral protein supplementation from a calculated intake of 3.5–4.0 g/kg/day improved growth in a safe manner.Keywords: human milk, human milk fortifier, growth, low birth weigh

    Repeated post-exercise administration with a mixture of leucine and glucose alters the plasma amino acid profile in Standardbred trotters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The branched chain amino acid leucine is a potent stimulator of insulin secretion. Used in combination with glucose it can increase the insulin response and the post exercise re-synthesis of glycogen in man. Decreased plasma amino acid concentrations have been reported after intravenous or per oral administration of leucine in man as well as after a single per oral dose in horses. In man, a negative correlation between the insulin response and the concentrations of isoleucine, valine and methionine have been shown but results from horses are lacking. This study aims to determine the effect of repeated per oral administration with a mixture of glucose and leucine on the free amino acid profile and the insulin response in horses after glycogen-depleting exercise.</p> <p>Methods</p> <p>In a crossover design, after a glycogen depleting exercise, twelve Standardbred trotters received either repeated oral boluses of glucose, 1 g/kg body weight (BW) at 0, 2 and 4 h with addition of leucine 0.1 g/kg BW at 0 and 4 h (GLU+LEU), or repeated boluses of water at 0, 2 and 4 h (CON). Blood samples for analysis of glucose, insulin and amino acid concentrations were collected prior to exercise and over a 6 h post-exercise period. A mixed model approach was used for the statistical analyses.</p> <p>Results</p> <p>Plasma leucine, isoleucine, valine, tyrosine and phenylalanine concentrations increased after exercise. Post-exercise serum glucose and plasma insulin response were significantly higher in the GLU+LEU treatment compared to the CON treatment. Plasma leucine concentrations increased after supplementation. During the post-exercise period isoleucine, valine and methionine concentrations decreased in both treatments but were significantly lower in the GLU+LEU treatment. There was no correlation between the insulin response and the response in plasma leucine, isoleucine, valine and methionine.</p> <p>Conclusions</p> <p>Repeated post-exercise administration with a mixture of leucine and glucose caused a marked insulin response and altered the plasma amino acid profile in horses in a similar manner as described in man. However, the decreases seen in plasma amino acids in horses seem to be related more to an effect of leucine and not to the insulin response as seen in man.</p

    Dietary intake and stress fractures among elite male combat recruits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Appropriate and sufficient dietary intake is one of the main requirements for maintaining fitness and health. Inadequate energy intake may have a negative impact on physical performance which may result in injuries among physically active populations. The purpose of this research was to evaluate a possible relationship between dietary intake and stress fracture occurrence among combat recruits during basic training (BT).</p> <p>Methods</p> <p>Data was collected from 74 combat recruits (18.2 ± 0.6 yrs) in the Israeli Defense Forces. Data analyses included changes in anthropometric measures, dietary intake, blood iron and calcium levels. Measurements were taken on entry to 4-month BT and at the end of BT. The occurrence of stress reaction injury was followed prospectively during the entire 6-month training period.</p> <p>Results</p> <p>Twelve recruits were diagnosed with stress fracture in the tibia or femur (SF group). Sixty two recruits completed BT without stress fractures (NSF). Calcium and vitamin D intakes reported on induction day were lower in the SF group compared to the NSF group-38.9% for calcium (589 ± 92 and 964 ± 373 mg·d<sup>-1</sup>, respectively, <it>p </it>< 0.001), and-25.1% for vitamin D (117.9 ± 34.3 and 157.4 ± 93.3 IU·d<sup>-1</sup>, respectively, <it>p </it>< 0.001). During BT calcium and vitamin D intake continued to be at the same low values for the SF group but decreased for the NSF group and no significant differences were found between these two groups.</p> <p>Conclusions</p> <p>The development of stress fractures in young recruits during combat BT was associated with dietary deficiency before induction and during BT of mainly vitamin D and calcium. For the purpose of intervention, the fact that the main deficiency is before induction will need special consideration.</p

    Exercise and functional foods

    Get PDF
    Appropriate nutrition is an essential prerequisite for effective improvement of athletic performance, conditioning, recovery from fatigue after exercise, and avoidance of injury. Nutritional supplements containing carbohydrates, proteins, vitamins, and minerals have been widely used in various sporting fields to provide a boost to the recommended daily allowance. In addition, several natural food components have been found to show physiological effects, and some of them are considered to be useful for promoting exercise performance or for prevention of injury. However, these foods should only be used when there is clear scientific evidence and with understanding of the physiological changes caused by exercise. This article describes various "functional foods" that have been reported to be effective for improving exercise performance or health promotion, along with the relevant physiological changes that occur during exercise

    Effects of beta-hydroxy-beta-methylbutyrate (HMB) on exercise performance and body composition across varying levels of age, sex, and training experience: A review

    Get PDF
    The leucine metabolite beta-hydroxy-beta-methylbutyrate (HMB) has been extensively used as an ergogenic aid; particularly among bodybuilders and strength/power athletes, who use it to promote exercise performance and skeletal muscle hypertrophy. While numerous studies have supported the efficacy of HMB in exercise and clinical conditions, there have been a number of conflicting results. Therefore, the first purpose of this paper will be to provide an in depth and objective analysis of HMB research. Special care is taken to present critical details of each study in an attempt to both examine the effectiveness of HMB as well as explain possible reasons for conflicting results seen in the literature. Within this analysis, moderator variables such as age, training experience, various states of muscle catabolism, and optimal dosages of HMB are discussed. The validity of dependent measurements, clustering of data, and a conflict of interest bias will also be analyzed. A second purpose of this paper is to provide a comprehensive discussion on possible mechanisms, which HMB may operate through. Currently, the most readily discussed mechanism has been attributed to HMB as a precursor to the rate limiting enzyme to cholesterol synthesis HMG-coenzyme A reductase. However, an increase in research has been directed towards possible proteolytic pathways HMB may operate through. Evidence from cachectic cancer studies suggests that HMB may inhibit the ubiquitin-proteasome proteolytic pathway responsible for the specific degradation of intracellular proteins. HMB may also directly stimulate protein synthesis, through an mTOR dependent mechanism. Finally, special care has been taken to provide future research implications

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients

    Sex Differences in Dietary Intake in British Army Recruits undergoing Phase One training

    Get PDF
    Background: British Army Phase One training exposes men and women to challenging distances of 13.5 km·d⁻¹ vs. 11.8 km·d⁻¹ and energy expenditures of ~4000 kcal·d⁻¹ and ~3000 kcal·d⁻¹, respectively. As such, it is essential that adequate nutrition is provided to support training demands. However, to date, there is a paucity of data on habitual dietary intake of British Army recruits. The aims of this study were to: (i) compare habitual dietary intake in British Army recruits undergoing Phase One training to Military Dietary Reference Values (MDRVs), and (ii) establish if there was a relative sex difference in dietary intake between men and women. Method: Researcher led weighed food records and food diaries were used to assess dietary intake in twenty-eight women (age 21.4 ± 3.0 yrs., height: 163.7 ± 5.0 cm, body mass 65.0 ± 6.7 kg), and seventeen men (age 20.4 ± 2.3 yrs., height: 178.0 ± 7.9 cm, body mass 74.6 ± 8.1 kg) at the Army Training Centre, Pirbright for 8-days in week ten of training. Macro and micronutrient content were estimated using dietary analysis software (Nutritics, Dublin) and assessed via an independent sample t-test to establish if there was a sex difference in daily energy, macro or micronutrient intakes. Results: Estimated daily energy intake was less than the MDRV for both men and women, with men consuming a greater amount of energy compared with women (2846 ± 573 vs. 2207 ± 585 kcal·day⁻¹, p0.030, ES=0.67). There were no differences in dietary fat intake between men and women (1.5 ± 0.2 vs. 1.5 ± 0.5 g·kg⁻¹·day⁻¹, p=0.483, ES=0.00). Conclusions: Daily EI in men and women in Phase One training does not meet MDRVs. Interventions to increase macronutrient intakes should be considered along with research investigating the potential benefits for increasing different macronutrient intakes on training adaptations

    Insulin resistance is a significant determinant of sarcopenia in advanced kidney disease

    No full text
    Maintenance hemodialysis (MHD) patients display significant nutritional abnormalities. Insulin is an anabolic hormone with direct effects on skeletal muscle (SM). We examined the anabolic actions of insulin, whole-body (WB), and SM protein turnover in 33 MHD patients and 17 participants without kidney disease using hyperinsulinemic-euglycemic-euaminoacidemic (dual) clamp. Gluteal muscle biopsies were obtained before and after the dual clamp. At baseline, WB protein synthesis and breakdown rates were similar in MHD patients. During dual clamp, controls had a highe r increase in WB protein synthesis and a higher suppression of WB protein breakdown compared with MUD patients, resulting in statistically significantly more positive WB protein net balance [2.02 (interquartile range [IQR]: 1.79 and 2.36) vs. 1.68 (IQR: 1.46 and 1.91) mg.kg fat-free mass (-1) .min (-1) for controls vs. for MHD patients, respectively, P < 0.001]. At baseline, SM protein synthesis and breakdown rates were higher in MHD patients versus controls, but SM net protein balance was similar between groups. During dual clamp, SM protein synthesis increased statistically significantly more in controls compared with MHD patients (p = 0.03), whereas SM protein breakdown decreased comparably between groups. SM net protein balance was statistically significantly more positive in controls compared with MHD patients [67.3 (IQR: 46.4 and 97.1) vs. 15.4 (IQR: -83.7 and 64.7) mu g.100 ml(-1) .min (-1) for controls and MHD patients, respectively, P = 0.031. Human SM biopsy showed a positive correlation between glucose and leucine disposal rates, phosphorylated AKT to AKT ratio, and muscle mitochondrial markers in controls but not in MHD patients. Diminished response to anabolic actions of insulin in the stimulated setting could lead to muscle wasting in MHD patients
    corecore