11 research outputs found

    Does the early frog catch the worm? Disentangling potential drivers of a parasite age–intensity relationship in tadpoles

    Get PDF
    The manner in which parasite intensity and aggregation varies with host age can provide insights into parasite dynamics and help identify potential means of controlling infections in humans and wildlife. A significant challenge is to distinguish among competing mechanistic hypotheses for the relationship between age and parasite intensity or aggregation. Because different mechanisms can generate similar relationships, testing among competing hypotheses can be difficult, particularly in wildlife hosts, and often requires a combination of experimental and model fitting approaches. We used field data, experiments, and model fitting to distinguish among ten plausible drivers of a curvilinear age–intensity relationship and increasing aggregation with host age for echinostome trematode infections of green frogs. We found little support for most of these proposed drivers but did find that the parsimonious explanation for the observed age–intensity relationship was seasonal exposure to echinostomes. The parsimonious explanation for the aggregated distribution of parasites in this host population was heterogeneity in exposure. A predictive model incorporating seasonal exposure indicated that tadpoles hatching early or late in the breeding season should have lower trematode burdens at metamorphosis, particularly with simulated warmer climates. Application of this multi-pronged approach (field surveys, lab experiments, and modeling) to additional parasite–host systems could lead to discovery of general patterns in the drivers of parasite age–intensity and age–distribution relationships

    Quantitative trait loci for sensitivity to ethanol intoxication in a C57BL/6J × 129S1/SvImJ inbred mouse cross

    Get PDF
    Individual variation in sensitivity to acute ethanol (EtOH) challenge is associated with alcohol drinking and is a predictor of alcohol abuse. Previous studies have shown that the C57BL/6J (B6) and 129S1/SvImJ (S1) inbred mouse strains differ in responses on certain measures of acute EtOH intoxication. To gain insight into genetic factors contributing to these differences, we performed quantitative trait locus (QTL) analysis of measures of EtOH-induced ataxia (accelerating rotarod), hypothermia, and loss of righting reflex (LORR) duration in a B6 × S1 F2 population. We confirmed that S1 showed greater EtOH-induced hypothermia (specifically at a high dose) and longer LORR compared to B6. QTL analysis revealed several additive and interacting loci for various phenotypes, as well as examples of genotype interactions with sex. QTLs for different EtOH phenotypes were largely non-overlapping, suggesting separable genetic influences on these behaviors. The most compelling main-effect QTLs were for hypothermia on chromosome 16 and for LORR on chromosomes 4 and 6. Several QTLs overlapped with loci repeatedly linked to EtOH drinking in previous mouse studies. The architecture of the traits we examined was complex but clearly amenable to dissection in future studies. Using integrative genomics strategies, plausible functional and positional candidates may be found. Uncovering candidate genes associated with variation in these phenotypes in this population could ultimately shed light on genetic factors underlying sensitivity to EtOH intoxication and risk for alcoholism in humans

    Undistorting the past: new techniques for orthorectification of archaeological aerial frame imagery

    No full text
    Archaeologists using airborne data can encounter a large variety of frame images in the course of their work. These range from vertical aerial photographs acquired with very expensive calibrated optics to oblique images from hand-held, uncalibrated cameras and even photographs shot with compact cameras from an array of unmanned airborne solutions. Additionally, imagery can be recorded in one or more spectral bands of the complete optical electromagnetic spectrum. However, these aerial images are rather useless from an archaeological standpoint as long as they are not interpreted in detail. Furthermore, the relevant archaeological information interpreted from these images has to be mapped and compared with information from other sources. To this end, the imagery must be accurately georeferenced, and the many geometrical distortions induced by the optics, the terrain and the camera tilt should be corrected. This chapter focuses on several types of archaeological airborne frame imagery, the distortion factors that are influencing these two-dimensional still images and the necessary steps to compute orthophotographs from them. Rather than detailing the conventional photogrammetric orthorectification workflows, this chapter mainly centres on the use of computer vision-based solutions such as structure from motion (SfM) and dense multi-view stereo (MVS). In addition to a theoretical underpinning of the working principles and algorithmic steps included in both SfM and MVS, real-world imagery originating from traditional and more advanced airborne imaging platforms will be used to illustrate the possibilities of such a computer vision-based approach: the variety of imagery that can be dealt with, how (accurately) these images can be transformed into map-like orthophotographs and how these results can aid in the documentation of archaeological resources at a variety of spatial scales. Moreover, the case studies detailed in this chapter will also prove that this approach might move beyond current restrictions of conventional photogrammetry due to its applicability to datasets that were previously thought to be unsuitable for convenient georeferencing

    Selective Brain Cooling in Mammals and Birds.

    No full text

    Die Gewinnung von einheitlichen und regelmäßigen Polymeren

    No full text
    corecore