129 research outputs found

    Camouflaging in a Complex Environment—Octopuses Use Specific Features of Their Surroundings for Background Matching

    Get PDF
    Living under intense predation pressure, octopuses evolved an effective and impressive camouflaging ability that exploits features of their surroundings to enable them to “blend in.” To achieve such background matching, an animal may use general resemblance and reproduce characteristics of its entire surroundings, or it may imitate a specific object in its immediate environment. Using image analysis algorithms, we examined correlations between octopuses and their backgrounds. Field experiments show that when camouflaging, Octopus cyanea and O. vulgaris base their body patterns on selected features of nearby objects rather than attempting to match a large field of view. Such an approach enables the octopus to camouflage in partly occluded environments and to solve the problem of differences in appearance as a function of the viewing inclination of the observer

    Social participation reduces depressive symptoms among older adults: An 18-year longitudinal analysis in Taiwan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively little empirical attention has focused on the association between social participation and depressive symptoms amongst older adults in Asian nations, where persons over the age of 65 represent a rapidly growing segment of the population. This study explores the dynamic relationship between participation in social activities and trajectories of depressive symptomatology among older Taiwanese adults surveyed over 18 years.</p> <p>Methods</p> <p>Data are from a nationally representative sample of 1,388 adults aged 60-64 first surveyed in 1989 and followed over an 18-year time period for a total of six waves. Individual involvement in social activities was categorized into continuous participation, ceased participation before age 70, initiating participation in older adulthood, never participated, and dropped out before age 70. Two domains of depressive symptoms--negative affect and lack of positive affect--were measured using a 10-item version of the Center for Epidemiologic Studies-Depression Scale.</p> <p>Results</p> <p>Analyses using growth curve modeling showed that continuously participating or initiating participation in social activities later life is significantly associated with fewer depressive symptoms among older Taiwanese adults, even after controlling for the confounding effects of aging, individual demographic differences, and health status.</p> <p>Conclusions</p> <p>These findings suggest that maintaining or initiating social participation in later life benefits the mental health of older adults. Facilitating social activities among older adults is a promising direction for programs intended to promote mental health and successful aging among older adults in Taiwan.</p

    Constitutive nuclear factor-kappa B mRNA, protein overexpression and enhanced DNA-binding activity in thymidylate synthase inhibitor-resistant tumour cells

    Get PDF
    In this study, the gene copy number, mRNA and protein expression levels and nuclear DNA-binding activity of nuclear factor kappa B (NF-kappaB) were compared in a panel of five pairs of thymidylate synthase (TS) inhibitor-resistant and wild-type parent cancer cell lines. High constitutive NF-kappaB DNA-binding activity was detected in all chemoresistant cell lines. The upregulated NF-kappaB activity was composed of NF-kappaB subunits p50 and p65. Four out of five resistant cell lines constitutively overexpressed NF-kappaB p50 and p63 mRNA and protein. One resistant cell line with the highest NF-kappaB DNA-binding activity showed normal p50 and p65 protein expression. No NF-kappaB gene amplification was detected in resistant cell lines. Transient exposure of wild-type RKOWT and H630(WT) cells to 5-FU induced NF-kappaB DNA-binding activity but had no effect on NF-kappaB protein expression in these cells, Our results indicate that high constitutive NF-kappaB activity caused by its gene overexpression is an intrinsic character of TS inhibitor-resistant cells. NF-kappaB can antagonise anticancer drug-induced apoptosis. High NF-kappaB expression and nuclear activity in TS inhibitor-resistant cancer cells may play an important role in the chemoresistance

    The isothiocyanate class of bioactive nutrients covalently inhibit the MEKK1 protein kinase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dietary isothiocyanates (ITCs) are electrophilic compounds that have diverse biological activities including induction of apoptosis and effects on cell cycle. They protect against experimental carcinogenesis in animals, an activity believed to result from the transcriptional induction of "Phase 2" enzymes. The molecular mechanism of action of ITCs is unknown. Since ITCs are electrophiles capable of reacting with sulfhydryl groups on amino acids, we hypothesized that ITCs induce their biological effects through covalent modification of proteins, leading to changes in cell regulatory events. We previously demonstrated that stress-signaling kinase pathways are inhibited by other electrophilic compounds such as menadione. We therefore tested the effects of nutritional ITCs on MEKK1, an upstream regulator of the SAPK/JNK signal transduction pathway.</p> <p>Methods</p> <p>The activity of MEKK1 expressed in cells was monitored using in vitro kinase assays to measure changes in catalytic activity. The activity of endogenous MEKK1, immunopurified from ITC treated and untreated LnCAP cells was also measured by in vitro kinase assay. A novel labeling and affinity reagent for detection of protein modification by ITCs was synthesized and used in competition assays to monitor direct modification of MEKK1 by ITC. Finally, immunoblots with phospho-specific antibodies were used to measure the activity of MAPK protein kinases.</p> <p>Results</p> <p>ITCs inhibited the MEKK1 protein kinase in a manner dependent on a specific cysteine residue in the ATP binding pocket. Inhibition of MEKK1 catalytic activity was due to direct, covalent and irreversible modification of the MEKK1 protein itself. In addition, ITCs inhibited the catalytic activity of endogenous MEKK1. This correlated with inhibition of the downstream target of MEKK1 activity, i.e. the SAPK/JNK kinase. This inhibition was specific to SAPK, as parallel MAPK pathways were unaffected.</p> <p>Conclusion</p> <p>These results demonstrate that MEKK1 is directly modified and inhibited by ITCs, and that this correlates with inhibition of downstream activation of SAPK. These results support the conclusion that ITCs may carry out many of their actions by directly targeting important cell regulatory proteins.</p

    Caffeic acid phenethyl ester decreases acute pneumonitis after irradiation in vitro and in vivo

    Get PDF
    BACKGROUND: Lung cancer is relatively resistant to radiation treatment and radiation pneumonitis is a major obstacle to increasing the radiation dose. We previously showed that Caffeic acid phenethyl ester (CAPE) induces apoptosis and increases radiosensitivity in lung cancer. To determine whether CAPE, an antioxidant and an inhibitor of NF-kappa B, could be a useful adjuvant agent for lung cancer treatment, we examine the effects of CAPE on irradiated normal lung tissue in this study. METHODS: We compared the effects of CAPE on cytotoxicity and intracellular oxidative stress in normal lung fibroblast and a lung cancer cell line. For in vivo analysis, whole thorax radiation (single dose 10 Gy and 20 Gy) was delivered to BALB/c male mice with or without CAPE pretreatment. NF- kappaB activation and the expression levels of acute inflammatory cytokines were evaluated in mice after irradiation. RESULTS: The in vitro studies showed that CAPE cause no significant cytotoxicity in normal lung as compared to lung cancer cells. This is probably due to the differential effect on the expression of NF-kappa B between normal and malignant lung cells. The results from in vivo study showed that CAPE treatment decreased the expression of inflammatory cytokines including IL-1 alpha and beta, IL-6, TNF-alpha and TGF- beta, after irradiation. Moreover, histological and immunochemical data revealed that CAPE decreased radiation- induced interstitial pneumonitis and TGF-beta expression. CONCLUSION: This study suggests that CAPE decreases the cascade of inflammatory responses induced by thoracic irradiation without causing toxicity in normal lung tissue. This provides a rationale for combining CAPE and thoracic radiotherapy for lung cancer treatment in further clinical studies

    Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cruciferous vegetable intake is inversely associated with the risk of several cancers. Isothiocyanates (ITC) are hypothesized to be the major bioactive constituents contributing to these cancer-preventive effects. The polymorphic glutathione-<it>S</it>-transferase (GST) gene family encodes several enzymes which catalyze ITC degradation <it>in vivo</it>.</p> <p>Methods</p> <p>We utilized high throughput proteomics methods to examine how human serum peptides (the "peptidome") change in response to cruciferous vegetable feeding in individuals of different <it>GSTM1 </it>genotypes. In two randomized, crossover, controlled feeding studies (EAT and 2EAT) participants consumed a fruit- and vegetable-free basal diet and the basal diet supplemented with cruciferous vegetables. Serum samples collected at the end of the feeding period were fractionated and matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry spectra were obtained. Peak identification/alignment computer algorithms and mixed effects models were used to analyze the data.</p> <p>Results</p> <p>After analysis of spectra from EAT participants, 24 distinct peaks showed statistically significant differences associated with cruciferous vegetable intake. Twenty of these peaks were driven by their <it>GSTM1 </it>genotype (i.e., <it>GSTM1+ </it>or <it>GSTM1- </it>null). When data from EAT and 2EAT participants were compared by joint processing of spectra to align a common set, 6 peaks showed consistent changes in both studies in a genotype-dependent manner. The peaks at 6700 <it>m/z </it>and 9565 <it>m/z </it>were identified as an isoform of transthyretin (TTR) and a fragment of zinc α2-glycoprotein (ZAG), respectively.</p> <p>Conclusions</p> <p>Cruciferous vegetable intake in <it>GSTM1+ </it>individuals led to changes in circulating levels of several peptides/proteins, including TTR and a fragment of ZAG. TTR is a known marker of nutritional status and ZAG is an adipokine that plays a role in lipid mobilization. The results of this study present evidence that the <it>GSTM1</it>-genotype modulates the physiological response to cruciferous vegetable intake.</p

    siRNA-Based Targeting of Cyclin E Overexpression Inhibits Breast Cancer Cell Growth and Suppresses Tumor Development in Breast Cancer Mouse Model

    Get PDF
    Cyclin E is aberrantly expressed in many types of cancer including breast cancer. High levels of the full length as well as the low molecular weight isoforms of cyclin E are associated with poor prognosis of breast cancer patients. Notably, cyclin E overexpression is also correlated with triple-negative basal-like breast cancers, which lack specific therapeutic targets. In this study, we used siRNA to target cyclin E overexpression and assessed its ability to suppress breast cancer growth in nude mice. Our results revealed that cyclin E siRNA could effectively inhibit overexpression of both full length and low molecular weight isoforms of cyclin E. We found that depletion of cyclin E promoted apoptosis of cyclin E-overexpressing cells and blocked their proliferation and transformation phenotypes. Significantly, we further demonstrated that administration of cyclin E siRNA could inhibit breast tumor growth in nude mice. In addition, we found that cyclin E siRNA synergistically enhanced the cell killing effects of doxorubicin in cell culture and this combination greatly suppressed the tumor growth in mice. In conclusion, our results indicate that cyclin E, which is overexpressed in 30% of breast cancer, may serve as a novel and effective therapeutic target. More importantly, our study clearly demonstrates a very promising therapeutic potential of cyclin E siRNA for treating the cyclin E-overexpressing breast cancers, including the very malignant triple-negative breast cancers

    Hepatitis B Virus X Protein Drives Multiple Cross-Talk Cascade Loops Involving NF-κB, 5-LOX, OPN and Capn4 to Promote Cell Migration

    Get PDF
    Hepatitis B virus X protein (HBx) plays an important role in the development of hepatocellular carcinoma (HCC). However, the mechanism remains unclear. Recently, we have reported that HBx promotes hepatoma cell migration through the upregulation of calpain small subunit 1 (Capn4). In addition, several reports have revealed that osteopontin (OPN) plays important roles in tumor cell migration. In this study, we investigated the signaling pathways involving the promotion of cell migration mediated by HBx. We report that HBx stimulates several factors in a network manner to promote hepatoma cell migration. We showed that HBx was able to upregulate the expression of osteopontin (OPN) through 5-lipoxygenase (5-LOX) in HepG2-X/H7402-X (stable HBx-transfected cells) cells. Furthermore, we identified that HBx could increase the expression of 5-LOX through nuclear factor-κB (NF-κB). We also found that OPN could upregulate Capn4 through NF-κB. Interestingly, we showed that Capn4 was able to upregulate OPN through NF-κB in a positive feedback manner, suggesting that the OPN and Capn4 proteins involving cell migration affect each other in a network through NF-κB. Importantly, NF-κB plays a crucial role in the regulation of 5-LOX, OPN and Capn4. Thus, we conclude that HBx drives multiple cross-talk cascade loops involving NF-κB, 5-LOX, OPN and Capn4 to promote cell migration. This finding provides new insight into the mechanism involving the promotion of cell migration by HBx

    Tissue-Specific Target Analysis of Disease-Associated MicroRNAs in Human Signaling Pathways

    Get PDF
    MicroRNAs are a large class of post-transcriptional regulators that bind to the 3′ untranslated region of messenger RNAs. They play a critical role in many cellular processes and have been linked to the control of signal transduction pathways. Recent studies indicate that microRNAs can function as tumor suppressors or even as oncogenes when aberrantly expressed. For more general insights of disease-associated microRNAs, we analyzed their impact on human signaling pathways from two perspectives. On a global scale, we found a core set of signaling pathways with enriched tissue-specific microRNA targets across diseases. The function of these pathways reflects the affinity of microRNAs to regulate cellular processes associated with apoptosis, proliferation or development. Comparing cancer and non-cancer related microRNAs, we found no significant differences between both groups. To unveil the interaction and regulation of microRNAs on signaling pathways locally, we analyzed the cellular location and process type of disease-associated microRNA targets and proteins. While disease-associated proteins are highly enriched in extracellular components of the pathway, microRNA targets are preferentially located in the nucleus. Moreover, targets of disease-associated microRNAs preferentially exhibit an inhibitory effect within the pathways in contrast to disease proteins. Our analysis provides systematic insights into the interaction of disease-associated microRNAs and signaling pathways and uncovers differences in cellular locations and process types of microRNA targets and disease-associated proteins
    corecore