561 research outputs found

    Effects of intertrochanteric varus osteotomy on norberg angle and percent coverage of the femoral head in displastic dogs

    Get PDF
    This study was conducted to assess the effects of femoral varus osteotomy on joint congruency in dogs affected by early stage hip dysplasia. Preoperative planning to move the femoral head within the acetabulum was carried out. Varisation of the femoral inclination angle (fIA) was achieved by Intertrochanteric Osteotomy (ITO). Norberg angle (NA), percent coverage (PC) of the femoral head by the acetabulum and fIA was measured from preoperative, immediate postoperative and first and second recheck radiographs of seven dogs that underwent an ITO (joint n = 9). There was significant (p < 0.05) improvement of both NA and PC in all patients as indicated by a change in the mean \ub1 standard deviation of 78.9\ub0 \ub1 7.5 and 36.9% \ub1 5.2 to 92.2\ub0 \ub1 6.7 and 50.6% \ub1 8.3, respectively. No significant difference (p < 0.05) was observed between the values of the planned femoral inclination angle (pfIA) of the femur and the effective femoral inclination angle (efIA) obtained after surgery (115.9\ub0 \ub1 2.5 and 111.3\ub0 \ub1 6.4, respectively). These findings could encourage the use of ITO in veterinary practice and indicate that intertrochanteric varus osteotomy should be re-considered for the treatment of early stage hip dysplasia in dogs with radiological signs of joint incongruenc

    NGF-response of EGF-dependent progenitor cells obtained from human sympathetic ganglia

    Get PDF
    SIGNALLING molecules are thought to play a significant role in determining the fate of neural crest progenitor cells. The human sympathetic chain was identified at 6.5, 7.5, 8.2, 10.2 and 11.4 postconception (PC) weeks demonstrating low affinity nerve growth factor (NGF) receptors, and was processed for tissue culture. In the presence of epidermal growth factor (EGF), floating spheres of proliferating progenitor cells were developed in vitro. In the absence of EGF progenitor cells differentiated into tyrosine hydroxylase (TH)-immunoreactive neuronal and TH-negative flat cells. NGF treatment significantly increased neurite outgrowth and survival of TH-immunoreactive cells. The multipotent cells we isolated differ from previously reported sympathoadrenal progenitors in that they give rise to TH immunoreactive neurones precociously sensitive to NGF

    A FMEA clinical laboratory case study: how to make problems and improvements measurable

    Get PDF
    The authors have experimented the application of the Failure Mode and Effect Analysis (FMEA) technique in a clinical laboratory. FMEA technique allows: a) to evaluate and measure the hazards of a process malfunction, b) to decide where to execute improvement actions, and c) to measure the outcome of those actions. A small sample of analytes has been studied: there have been determined the causes of the possible malfunctions of the analytical process, calculating the risk probability index (RPI), with a value between 1 and 1,000. Only for the cases of RPI &gt; 400, improvement actions have been implemented that allowed a reduction of IPR values between 25% to 70% with a costs increment of &lt;1%. FMEA technique can be applied to the processes of a clinical laboratory, even if of small dimensions, and offers a high potential of improvement. Nevertheless, such activity needs a thorough planning because it is complex, even if the laboratory already operates an ISO 9000 Quality Management System

    Rapid detection of copy number variations and point mutations in BRCA1/2 genes using a single workflow by ion semiconductor sequencing pipeline

    Get PDF
    Molecular analysis of BRCA1 (MIM# 604370) and BRCA2 (MIM #600185) genes is essential for familial breast and ovarian cancer prevention and treatment. An efficient, rapid, cost-effective accurate strategy for the detection of pathogenic variants is crucial. Mutations detection of BRCA1/2 genes includes screening for single nucleotide variants (SNVs), small insertions or deletions (indels), and Copy Number Variations (CNVs). Sanger sequencing is unable to identify CNVs and therefore Multiplex Ligation Probe amplification (MLPA) or Multiplex Amplicon Quantification (MAQ) is used to complete the BRCA1/2 genes analysis. The rapid evolution of Next Generation Sequencing (NGS) technologies allows the search for point mutations and CNVs with a single platform and workflow. In this study we test the possibilities of NGS technology to simultaneously detect point mutations and CNVs in BRCA1/2 genes, using the OncomineTM BRCA Research Assay on Personal Genome Machine (PGM) Platform with Ion Reporter Software for sequencing data analysis (Thermo Fisher Scientific). Comparison between the NGS-CNVs, MLPA and MAQ results shows how the NGS approach is the most complete and fast method for the simultaneous detection of all BRCA mutations, avoiding the usual time consuming multistep approach in the routine diagnostic testing of hereditary breast and ovarian cancers

    Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy.

    Get PDF
    Background: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder characterized by unexplained left ventricle hypertrophy associated with non-dilated ventricular chambers. Several genes encoding heart sarcomeric proteins have been associated to HCM, but a small proportion of HCM patients harbor alterations in other non-sarcomeric loci. The variable expression of HCM seems influenced by genetic modifier factors and new sequencing technologies are redefining the understanding of genotype–phenotype relationships, even if the interpretations of the numerous identified variants pose several challenges. Methods and results: We investigated 62 sarcomeric and non-sarcomeric genes in 41 HCM cases and in 3 HCM-related disorders patients. We employed an integrated approach that combines multiple tools for the prediction, annotation and visualization of functional variants. Genotype–phenotype correlations were carried out for inspecting the involvement of each gene in age onset and clinical variability of HCM. The 80% of the non-syndromic patients showed at least one rare non-synonymous variant (nsSNV) and among them, 58% carried alterations in sarcomeric loci, 14% in desmosomal and 7% in other non-sarcomeric ones without any sarcomere change. Statistical analyses revealed an inverse correlation between the number of nsSNVs and age at onset, and a relationship between the clinical variability and number and type of variants. Conclusions: Our results extend the mutational spectrum of HCM and contribute in defining the molecular pathogenesis and inheritance pattern(s) of this condition. Besides, we delineate a specific procedure for the identification of the most likely pathogenetic variants for a next generation sequencing approach embodied in a clinical context

    PARP inhibitors affect growth, survival and radiation susceptibility of human alveolar and embryonal rhabdomyosarcoma cell lines

    Get PDF
    PARP inhibitors (PARPi) are used in a wide range of human solid tumours but a limited evidence is reported in rhabdomyosarcoma (RMS), the most frequent childhood soft-tissue sarcoma. The cellular and molecular effects of Olaparib, a specific PARP1/2 inhibitor, and AZD2461, a newly synthesized PARP1/2/3 inhibitor, were assessed in alveolar and embryonal RMS cells both as single-agent and in combination with ionizing radiation (IR)

    Constraining Chameleon screening using galaxy cluster dynamics

    Full text link
    We constrain the Chameleon \textit{screening} mechanism in galaxy clusters, essentially obtaining limits on the coupling strength β\beta and the asymptotic value of the field ϕ\phi_{\infty}. For this purpose, we utilized a collection of the 9 relaxed galaxy clusters within the X-COP compilation in the redshift range of z0.1z \le 0.1. We implement the formalism assuming an NFW mass profile for the dark matter density and study the degeneracy present between the mass \M and the chameleon coupling with a high degree of improvement in the constraints for excluded parameter space. We recast our constrain to an upper limit on the scalaron field in \fofr sub-class of models of fR09.2×106|f_{R0}|\le 9.2\times 10^{-6}, using all the nine clusters and fR01.2×105|f_{R0}|\le 1.2\times 10^{-5} using only 5 clusters with WL priors taken into account, at a 95%95\% confidence level. These bounds are consistent with existing limits in the literature and tighter than the constraints obtained with the same method by previous studies.Comment: Comments are welcom

    CLASH-VLT: Testing the Nature of Gravity with Galaxy Cluster Mass Profiles

    Get PDF
    We use high-precision kinematic and lensing measurements of the total mass profile of the dynamically relaxed galaxy cluster MACS J1206.2-0847 at z=0.44z=0.44 to estimate the value of the ratio η=Ψ/Φ\eta=\Psi/\Phi between the two scalar potentials in the linear perturbed Friedmann-Lemaitre-Robertson-Walker metric.[...] Complementary kinematic and lensing mass profiles were derived from exhaustive analyses using the data from the Cluster Lensing And Supernova survey with Hubble (CLASH) and the spectroscopic follow-up with the Very Large Telescope (CLASH-VLT). Whereas the kinematic mass profile tracks only the time-time part of the perturbed metric (i.e. only Φ\Phi), the lensing mass profile reflects the contribution of both time-time and space-space components (i.e. the sum Φ+Ψ\Phi+\Psi). We thus express η\eta as a function of the mass profiles and perform our analysis over the radial range 0.5Mpcrr200=1.96Mpc0.5\,Mpc\le r\le r_{200}=1.96\,Mpc. Using a spherical Navarro-Frenk-White mass profile, which well fits the data, we obtain \eta(r_{200})=1.01\,_{-0.28}^{+0.31} at the 68\% C.L. We discuss the effect of assuming different functional forms for mass profiles and of the orbit anisotropy in the kinematic reconstruction. Interpreting this result within the well-studied f(R)f(R) modified gravity model, the constraint on η\eta translates into an upper bound to the interaction length (inverse of the scalaron mass) smaller than 2 Mpc. This tight constraint on the f(R)f(R) interaction range is however substantially relaxed when systematic uncertainties in the analysis are considered. Our analysis highlights the potential of this method to detect deviations from general relativity, while calling for the need of further high-quality data on the total mass distribution of clusters and improved control on systematic effects.Comment: 18 pages, 3 figures, submitted to JCA

    Microfluidic tools for enhanced characterization of therapeutic stem cells and prediction of their potential antimicrobial secretome

    Get PDF
    Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advan-tageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms

    A new predictive technology for perinatal stem cell isolation suited for cell therapy approaches

    Get PDF
    The use of stem cells for regenerative applications and immunomodulatory effect is in-creasing. Amniotic epithelial cells (AECs) possess embryonic‐like proliferation ability and multipo-tent differentiation potential. Despite the simple isolation procedure, inter‐individual variability and different isolation steps can cause differences in isolation yield and cell proliferation ability, compromising reproducibility observations among centers and further applications. We investi-gated the use of a new technology as a diagnostic tool for quality control on stem cell isolation. The instrument label‐free separates cells based on their physical characteristics and, thanks to a micro-camera, generates a live fractogram, the fingerprint of the sample. Eight amniotic membranes were processed by trypsin enzymatic treatment and immediately analysed. Two types of profile were generated: a monomodal and a bimodal curve. The first one represented the unsuccessful isolation with all recovered cell not attaching to the plate; while for the second type, the isolation process was successful, but we discovered that only cells in the second peak were alive and resulted adherent. We optimized a Quality Control (QC) method to define the success of AEC isolation using the frac-togram generated. This predictive outcome is an interesting tool for laboratories and cell banks that isolate and cryopreserve fetal annex stem cells for research and future clinical applications
    corecore