240 research outputs found

    Neurological signs and MRI findings in 12 dogs with multiple myeloma

    Get PDF
    Vertebral lesions and associated neurological signs occur in dogs with multiple myeloma, however, veterinary literature describing MRI findings is currently lacking. The objective of this multicenter, retrospective, case series study was to describe neurological signs and MRI findings in a group of dogs that presented for spinal pain or other neurological deficits and had multiple myeloma. Electronic records of four veterinary referral hospitals were reviewed. Dogs were included if they had a pathologically confirmed diagnosis of multiple myeloma, had presented for spinal pain or other neurological signs, and had undergone MRI of the vertebral column. The MRI studies were evaluated and the anatomical location of lesion(s), signal intensity, presence of extra‐dural material, degree of spinal cord compression, extent of vertebral lesions, and contrast enhancement were recorded. Twelve dogs met inclusion criteria. Most dogs (n = 8) had a chronic progressive history, with varying degrees of proprioceptive ataxia and paresis (n = 11), and spinal pain was a feature in all dogs. The MRI findings were variable but more consistent features included the presence of multiple expansile vertebral lesions without extension beyond the outer cortical limits of affected vertebrae, and associated extradural material causing spinal cord compression. The majority of lesions were hyper‐ to isointense on T2 (n = 12) and T1‐weighted (n = 8) sequences, with variable but homogeneous contrast‐enhancement (n = 12). These described MRI characteristics of multiple myeloma may be used to aid early identification and guide subsequent confirmatory diagnostic steps, to ultimately improve therapeutic approach and long‐term outcome

    Coordination Chemistry and Sensing Properties Towards Anions and Metal Ions of a Simple Fluorescent Urea

    Get PDF
    The coordination and sensing properties towards anions and transition metal ions of the simple novel fluorescent urea 1-(2-aminophenyl)-3-(naphthalen-1)-yl)urea (L) were investigated in solution, and in the solid state. An electron donating amine group in the molecular skeleton of L decreased the acidity of the urea NHs that are usually deprotonated by basic anions and allowed for a good degree of affinity towards fluoride in DMSO-d6-0.5 %H2O. Moreover, the amine moiety acted as a further binding group for metal ions. Indeed, L was able to bind Zn2+ both in solution and in the solid state, and to respond to the presence of this metal ion in MeCN with an enhancement of the fluorescence emission. Although solution studies evidenced the formation of a 1 : 1 complex of L with Zn2+, complexes with a 2 : 1 ligand-to-metal stoichiometry were isolated in the solid state. DFT calculations helped to clarify the stability reasons behind these results

    Mass-change And Geosciences International Constellation (MAGIC) expected impact on science and applications

    Get PDF
    Summary The joint ESA/NASA Mass-change And Geosciences International Constellation (MAGIC) has the objective to extend time series from previous gravity missions, including an improvement of accuracy and spatio-temporal resolution. The long-term monitoring of Earth’s gravity field carries information on mass-change induced by water cycle, climate change, and mass transport processes between atmosphere, cryosphere, oceans and solid Earth. MAGIC will be composed of two satellite pairs flying in different orbit planes. The NASA/DLR–led first pair (P1) is expected to be in a near-polar orbit around 500 km of altitude; while the second ESA–led pair (P2) is expected to be in an inclined orbit of 65–70 degrees at approximately 400 km altitude. The ESA–led pair P2 Next Generation Gravity Mission (NGGM) shall be launched after P1 in a staggered manner to form the MAGIC constellation. The addition of an inclined pair shall lead to reduction of temporal aliasing effects and consequently of reliance on de-aliasing models and post-processing. The main novelty of the MAGIC constellation is the delivery of mass-change products at higher spatial resolution, temporal (i.e. sub–weekly) resolution, shorter latency, and higher accuracy than GRACE and GRACE-FO. This will pave the way to new science applications and operational services. In this article, an overview of various fields of science and service applications for hydrology, cryosphere, oceanography, solid Earth, climate change and geodesy is provided. These thematic fields and newly enabled applications and services were analysed in the frame of the initial ESA Science Support activities for MAGIC. The analyses of MAGIC scenarios for different application areas in the field of geosciences confirmed that the double-pair configuration will significantly enlarge the number of observable mass-change phenomena by resolving smaller spatial scales with an uncertainty that satisfies evolved user requirements expressed by international bodies such as IUGG. The required uncertainty levels of dedicated thematic fields met by MAGIC unfiltered Level-2 products will benefit hydrological applications by recovering more than 90% of the major river basins worldwide at 260 km spatial resolution, cryosphere applications by enabling mass change signal separation in the interior of Greenland from those in the coastal zones and by resolving small-scale mass variability in challenging regions such as the Antarctic Peninsula, oceanography applications by monitoring meridional overturning circulation changes on time scales of years and decades, climate applications by detecting amplitude and phase changes of Terrestrial Water Storage (TWS) after 30 years in 64% and 56% of the global land areas and solid Earth applications by lowering the Earthquake detection threshold from magnitude 8.8 to magnitude 7.4 with spatial resolution increased to 333 km.</jats:p

    Tyrosine kinase c-Src constitutes a bridge between cystic fibrosis transmembrane regulator channel failure and MUC1 overexpression in cystic fibrosis

    Get PDF
    Fil: González Guerrico, Anatilde M. Instituto de Investigaciones Bioquı́micas Fundación Campomar (UBA, CONICET), 1405 Buenos Aires; Argentina.Fil: Cafferata, Eduardo. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica; Argentina.Fil: Radrizzani, Martín. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica; Argentina.Fil: Marcucci, Florencia. Instituto de Investigaciones Bioquı́micas Fundación Campomar (UBA, CONICET), 1405 Buenos Aires; Argentina.Fil: Gruenert, Dieter. Human Molecular Genetics Unit, Department of Medicine, University of Vermont, Burlington; Estados Unidos.Fil: Pivetta, Omar H. ANLIS Dr.C.G.Malbrán. Centro Nacional de Genética Médica; Argentina.Fil: Favaloro, Roberto R. Fundación Favaloro, 1093 Buenos Aires; Argentina.Fil: Laguens, Rubén. Fundación Favaloro, 1093 Buenos Aires; Argentina.Fil: Perrone, Sergio V. Fundación Favaloro, 1093 Buenos Aires; Argentina.Fil: Gallo, Guillermo C. Hospital de Pediatrı́a Prof. Dr. Juan P. Garrahan, 1425 Buenos Aires; Argentina.Fil: Santa-Coloma, Tomás A. Instituto de Investigaciones Bioquı́micas Fundación Campomar (UBA, CONICET), 1405 Buenos Aires; Argentina.Cystic fibrosis (CF), a disease caused by mutations in the cystic fibrosis transmembrane regulator (CFTR) chloride channel, is associated in the respiratory system with the accumulation of mucus and impaired lung function. The role of the CFTR channel in the regulation of the intracellular pathways that determine the overexpression of mucin genes is unknown. Using differential display, we have observed the differential expression of several mRNAs that may correspond to putative CFTR-dependent genes. One of these mRNAs was further characterized, and it corresponds to the tyrosine kinase c-Src. Additional results suggest that c-Src is a central element in the pathway connecting the CFTR channel with MUC1 overexpression and that the overexpression of mucins is a primary response to CFTR malfunction in cystic fibrosis, which occurs even in the absence of bacterial infection
    corecore