46 research outputs found

    Surface reactivity of tributyl thiophosphate: effects of temperature and mechanical stress

    Get PDF
    The surface reactivity of tributyl thiophosphate on iron surfaces has been studied in situ by attenuated total reflection Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reaction and desorption spectroscopies. The results show that at temperatures lower than 373K the molecule forms a physisorbed layer on the iron substrate. At 373K a reaction takes place with the formation of an organic layer, together with iron polyphosphate and sulfate. At higher temperatures temperature-programmed desorption results suggest that the mechanism involves P-O bond scission to yield butoxy groups. This could be preceded by P=S bond scission to give tributyl phosphite, which then, in turn, undergoes P-O bond scission to produce butoxy groups. The results obtained following tribological testing are in agreement with those of thermal tests: evidence of polyphosphate and sulfate formation is foun

    Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation

    Get PDF
    In the search for improved imaging modalities for detection and diagnosis of breast cancer, a high negative prediction value is also important. Photoacoustic (optoacoustic) imaging is a relatively new technique that has high potential for visualizing breast malignancies, but little is known about the photoacoustic appearance of benign lesions. In this work, we investigate the visibility of benign breast cysts in forward-mode photoacoustic mammography using 1064-nm light, as currently applied in the Twente photoacoustic mammoscope. Results from (Monte Carlo and k-wave) simulations and phantom measurements were used to interpret results from patient measurements. There was a strong agreement among the results from simulations, phantom, and patient measurements. Depending on the absorption contrast between cyst and breast tissue, cysts were visible as either one or two confined high-contrast areas representing the front and the back of the cyst, respectively. This edge enhancement is most likely the consequence of the local sudden change in the absorbed energy density and Grüneisen coefficients. Although the current forward-mode single-wavelength photoacoustic mammoscope cannot always unambiguously discriminate cysts from malignancies, this study reveals specific features of cysts compared to malignancies, which can be exploited for discrimination of the two abnormalities in future modifications of the image

    Breast imaging using the Twente Photoacoustic Mammoscope (PAM): new clinical measurements

    Get PDF
    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast cancer. Since photoacoustic imaging can visualize hemoglobin in tissue with optical contrast and ultrasound-like resolution, it is potentially an ideal method for early breast cancer imaging. The Twente Photoacoustic Mammoscope (PAM) has been developed specifically for breast imaging. Recently, a large clinical study has been started in the Medisch Spectrum Twente in Oldenzaal using PAM. In PAM, the breast is slightly compressed between a window for laser light illumination and a flat array ultrasound detector. The measurements are performed using a Q-switched Nd:YAG laser, pulsed at 1064 nm and a 1 MHz unfocused ultrasound detector array. Three-dimensional data are reconstructed using a delay and sum reconstruction algorithm. Those reconstructed images are compared with conventional imaging and histopathology. In the first phase of the study 12 patients with a malignant lesion and 2 patients with a benign cyst have been measured. The results are used to guide developments in photoacoustic mammography in order to pave the way towards an optimal technique for early diagnosis of breast cancer

    Virtual Ontogeny of Cortical Growth Preceding Mental Illness

    Get PDF
    Background: Morphology of the human cerebral cortex differs across psychiatric disorders, with neurobiology and developmental origins mostly undetermined. Deviations in the tangential growth of the cerebral cortex during pre/perinatal periods may be reflected in individual variations in cortical surface area later in life. Methods: Interregional profiles of group differences in surface area between cases and controls were generated using T1-weighted magnetic resonance imaging from 27,359 individuals including those with attention-deficit/hyperactivity disorder, autism spectrum disorder, bipolar disorder, major depressive disorder, schizophrenia, and high general psychopathology (through the Child Behavior Checklist). Similarity of interregional profiles of group differences in surface area and prenatal cell-specific gene expression was assessed. Results: Across the 11 cortical regions, group differences in cortical area for attention-deficit/hyperactivity disorder, schizophrenia, and Child Behavior Checklist were dominant in multimodal association cortices. The same interregional profiles were also associated with interregional profiles of (prenatal) gene expression specific to proliferative cells, namely radial glia and intermediate progenitor cells (greater expression, larger difference), as well as differentiated cells, namely excitatory neurons and endothelial and mural cells (greater expression, smaller difference). Finally, these cell types were implicated in known pre/perinatal risk factors for psychosis. Genes coexpressed with radial glia were enriched with genes implicated in congenital abnormalities, birth weight, hypoxia, and starvation. Genes coexpressed with endothelial and mural genes were enriched with genes associated with maternal hypertension and preterm birth. Conclusions: Our findings support a neurodevelopmental model of vulnerability to mental illness whereby prenatal risk factors acting through cell-specific processes lead to deviations from typical brain development during pregnancy

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    HEMOCOMPATIBLE MATERIALS

    No full text
    2The complexity of the interactions between materials and blood makes the development of hemocompatible surfaces very difficult. Biomaterials research is focused on developing materials that have fewer risks and greater benefits. Stents that ‘‘actively’’ prevent restenosis are a great example of how surface modification of metals can result in a dramatic clinical effect. Inert materials are protein and platelet resistant, but they do not prevent thromboembolic phenomena in vivo. On the other hand, incorporating anticoagulants in to surfaces reduces thrombin production, but this may not be sufficient to prevent platelet adhesion and activation. Thus, which approach will ultimately be successful is impossible to predict. Perhaps, the failure to produce an ideal blood-compatible surface merely reflects our limited understanding of the complex blood-materials interaction. Progresses in design hemocompatible materials will be then determined by a deeper understanding of both the surface properties of materials and the interfacial phenomena originating at the blood–material interface.reservedmixedA. MAGNANI; PIRAS F.MMagnani, Agnese; Piras, F. M

    Hemocompatible Materials

    No full text
    corecore