35 research outputs found

    Antimicrobial, antioxidant and anti-tyrosinase properties of extracts of the Mediterranean parasitic plant Cytinus hypocistis

    Get PDF
    Background: Cytinus is an endophytic parasitic plant occurring in South Africa, Madagascar, and in the Mediterranean region. We have extracted the inflorescences (the only visible part of the plant, emerging from the host roots at the time of blossom) of Cytinus hypocistis collected in Sardinia, Italy, and explored the antimicrobial, antioxidant, anti-tyrosinase, and cytotoxic activities of the extracts. Methods: Extracts from C. hypocistis were prepared using increasing polarity solvents: cyclohexane, ethanol, and water. Phenolic composition were determined through spectrophotometric assays, and antioxidant activity with both electron-transfer and hydrogen-atom assays. Nine different bacterial strains, including clinical isolate methicillin-resistant Staphylococcus aureus, were used in agar diffusion method. Cytotoxicity was tested using against the B16F10 melanoma cell line. Results: While cyclohexane extracts where biologically inactive, ethanolic and aqueous extracts displayed an intriguing activity against several Gram-positive bacterial strains, including methicillin-resistant S. aureus, and against the Gram-negative Acinetobacter baumanii. Compared to the conventional antibiotics like cloxacillin, ampicillin, and oxytetracycline, C. hypocistis extracts were less active in absolute terms, but displayed a wider spectrum (notably, cloxacillin and ampicillin were inactive against methicillin-resistant S. aureus). The ethanolic extract of C. hypocistis was found to be particularly rich in polyphenols, in most part hydrolysable tannins. The antioxidant activity of extracts, tested with several methodologies, resulted to be particularly high in the case of ethanolic extracts, in accordance with the composition in phenolics. In detail, ethanol extracts presented about a twofold higher activity than the water sample when tested through the oxygen radical absorbance capacity-pyrogallol red (ORAC-PYR) assay. Cytotoxicity analysis against the B16F10 melanoma cell line showed that both extracts have not significant cytotoxic effect, even at the highest dose (1000 μg/mL). Tests showed that ethanolic extracts also had the greatest tyrosinase inhibition activity, indicating that C. hypocistis-derived substances could find application in food formulations as anti-browning agents. Conclusions: Overall, these results point to the need of further studies on C. hypocistis extracts, aimed at isolating and fully characterizing its biologically active compounds. © 2015 Zucca et al

    Recyclable GO-Arginine Hybrids for CO2 Fixation into Cyclic Carbonates

    Get PDF
    New covalently modified GO-guanidine materials are realized on a gram-scale synthesis and purified via an innovative microfiltration. The use of these composites in the fixation of CO2into cyclic carbonates is demonstrated. Mild operating conditions, high yields (up to 85%), wide scope (15 examples) and recoverability/reusability (up to 5 cycle) of the material account for the efficiency of the protocol. Dedicated control experiments contributed to shed light on the activation modes exerted by the GO-Arg (Arg: arginine) during the ring-opening/closing synthetic sequence

    Biological activities and nutraceutical potentials of water extracts from different parts of Cynomorium coccineum L. (Maltese Mushroom)

    Get PDF
    Maltese Mushroom (Cynomorium coccineum L.) is a non-photosynthetic plant that has been used in traditional medicine for many centuries. In this paper, water extracts from the whole plant, external layer and peeled plant were studied to determine the main components responsible for its biological activities, i.e., its antimicrobial, antioxidant, and anti-tyrosinase activities; its cytotoxicity against mouse melanoma B16F10 cells; and its pro-erectile activity in adult male rats. The results of electron transfer and hydrogen transfer assays showed that the antioxidant activity was mainly due to anthocyanins in the external layer, whereas the external layer and peeled plant extracts both inhibited the microbial growth of several Gram-positive strains. In contrast, the whole plant extract had the highest anti-tyrosinase activity and exhibited pro-erectile activity when administered subcutane-ously. Overall, this study elucidated which parts of Maltese Mushroom are responsible for its antimicrobial, antioxidant, and anti-tyrosinase activities and thus which extracts have potential for use in nutraceutical formulation

    DART: the distributed agent based retrieval toolkit

    Get PDF
    The technology of search engines is evolving from indexing and classification of web resources based on keywords to more sophisticated techniques which take into account the meaning and the context of textual information and usage. Replying to query, commercial search engines face the user requests with a large amount of results, mostly useless or only partially related to the request; the subsequent refinement, operated downloading and examining as much pages as possible and simply ignoring whatever stays behind the first few pages, is left up to the user. Furthermore, architectures based on centralized indexes, allow commercial search engines to control the advertisement of online information, in contrast to P2P architectures that focus the attention on user requirements involving the end user in search engine maintenance and operation. To address such wishes, new search engines should focus on three key aspects: semantics, geo-referencing, collaboration/distribution. Semantic analysis lets to increase the results relevance. The geo-referencing of catalogued resources allows contextualisation based on user position. Collaboration distributes storage, processing, and trust on a world-wide network of nodes running on users’ computers, getting rid of bottlenecks and central points of failures. In this paper, we describe the studies, the concepts and the solutions developed in the DART project to introduce these three key features in a novel search engine architecture

    Graphene-Oxide Mediated Chemodivergent Ring-Opening of Cyclobutanols

    Get PDF
    The chemodivergent ring-opening of cyclobutanols is described under the carbocatalytic assistance of graphene oxide (GO). The protocol enables the synthesis of diversely functionalized dienes or indenes (26 examples) based on the amount of GO employed. Spectroscopic (XPS and ssNMR) as well as experimental investigations revealed a direct involvement of the π-domains of GO in tuning the stability of carbocationic intermediates during the reaction

    A collaborative, semantic and context-aware search engine

    Get PDF
    Search engines help people to find information in the largest public knowledge system of the world: the Web. Unfortunately its size makes very complex to discover the right information. The users are faced lots of useless results forcing them to select one by one the most suitable. The new generation of search engines evolve from keyword-based indexing and classification to more sophisticated techniques considering the meaning, the context and the usage of information. We argue about the three key aspects: collaboration, geo-referencing and semantics. Collaboration distributes storage, processing and trust on a world-wide network of nodes running on users’ computers, getting rid of bottlenecks and central points of failures. The geo-referencing of catalogued resources allows contextualisation based on user position. Semantic analysis lets to increase the results relevance. In this paper, we expose the studies, the concepts and the solutions of a research project to introduce these three key features in a novel search engine architecture.213-21

    Enhanced Amphiphilic Profile of a Short β-Stranded Peptide Improves Its Antimicrobial Activity

    Get PDF
    SB056 is a novel semi-synthetic antimicrobial peptide with a dimeric dendrimer scaffold. Active against both Gram-negative and -positive bacteria, its mechanism has been attributed to a disruption of bacterial membranes. The branched peptide was shown to assume a β- stranded conformation in a lipidic environment. Here, we report on a rational modification of the original, empirically derived linear peptide sequence [WKKIRVRLSA-NH2_{2}, SB056-lin]. We interchanged the first two residues [KWKIRVRLSA-NH2_{2}, β-SB056-lin] to enhance the amphipathic profile, in the hope that a more regular β-strand would lead to a better antimicrobial performance. MIC values confirmed that an enhanced amphiphilic profile indeed significantly increases activity against both Gram-positive and -negative strains. The membrane binding affinity of both peptides, measured by tryptophan fluorescence, increased with an increasing ratio of negatively charged/zwitterionic lipids. Remarkably, β- SB056-lin showed considerable binding even to purely zwitterionic membranes, unlike the original sequence, indicating that besides electrostatic attraction also the amphipathicity of the peptide structure plays a fundamental role in binding, by stabilizing the bound state. Synchrotron radiation circular dichroism and solid-state 19^{19}F-NMR were used to characterize and compare the conformation and mobility of the membrane bound peptides. Both SB056- lin and β-SB056-lin adopt a β-stranded conformation upon binding POPC vesicles, but the former maintains an intrinsic structural disorder that also affects its aggregation tendency. Upon introducing some anionic POPG into the POPC matrix, the sequence-optimized β- SB056-lin forms well-ordered β-strands once electro-neutrality is approached, and it aggregates into more extended β-sheets as the concentration of anionic lipids in the bilayer is raised. The enhanced antimicrobial activity of the analogue correlates with the formation of these extended β-sheets, which also leads to a dramatic alteration of membrane integrity as shown by 31^{31}P-NMR. These findings are generally relevant for the design and optimization of other membrane-active antimicrobial peptides that can fold into amphipathic β-strands

    Physiological and phylogenetic characterization of Rhodotorula diobovata DSBCA06, a nitrophilous yeast

    No full text
    Agriculture and intensive farming methods are the greatest cause of nitrogen pollution. In particular, nitrification (the conversion of ammonia to nitrate) plays a role in global climate changes, affecting the bio-availability of nitrogen in soil and contributing to eutrophication. In this paper, the Rhodotorula diobovata DSBCA06 was investigated for growth kinetics on nitrite, nitrate, or ammonia as the sole nitrogen sources (10 mM). Complete nitrite removal was observed in 48 h up to 10 mM initial nitrite. Nitrogen was almost completely assimilated as organic matter (up to 90% using higher nitrite concentrations). The strain tolerates and efficiently assimilates nitrite at concentrations (up to 20 mM) higher than those previously reported in literature for other yeasts. The best growth conditions (50 mM buffer potassium phosphate pH 7, 20 g/L glucose as the sole carbon source, and 10 mM nitrite) were determined. In the perspective of applications in inorganic nitrogen removal, other metabolic features relevant for process optimization were also evaluated, including renewable sources and heavy metal tolerance. Molasses, corn, and soybean oils were good substrates, and cadmium and lead were well tolerated. Scale-up tests also revealed promising features for large-scale applications. Overall, presented results suggest applicability of nitrogen assimilation by Rhodotorula diobovata DSBCA06 as an innovative tool for bioremediation and treatment of wastewater effluents

    Cultural factors affecting biosurfactant production by Gordonia sp. BS29

    No full text
    Gordonia sp. BS29 is a hydrocarbon-degrading bacterium isolated from a site chronically contaminated by diesel. The strain produces extracellular bioemulsifiers, able to produce stable emulsions, and cell-bound glycolipid biosurfactants, able to reduce surface tension. The aims of this work were to investigate the cultural factors affecting the production of the cell-bound biosurfactants by Gordonia sp. BS29 and to find the optimal composition of growth medium for the production. The cultural factors which have a significant influence on surfactant biosynthesis, identified by a two level 2(8-2) Fractional Factorial Design, were the type and concentration of the carbon source, the concentrations of phosphates and sodium chloride, and the interactions among these factors. On these factors, a flask-scale optimisation of cultural conditions was carried out. Then, a steepest ascent procedure and a Central Composite Design were applied to obtain a second order polynomial function fitting the experimental data near the optimum. In the optimised cultural condition we obtained a 5-fold increase in the biosurfactant concentration compared to the un-optimised medium (26.00), reaching a Critical Micelle Dilution value (129.43) among the highest in literature. The optimisation procedure did not change the number and type of the glycolipid biosurfactants produced by Gordonia sp. BS29
    corecore