15,556 research outputs found

    Soft X-ray emission in kink-unstable coronal loops

    Get PDF
    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the flare plasma heating. We compute the temporal evolution of the thermal X-ray emission in kink-unstable coronal loops using MHD simulations and discuss the results of with respect to solar flare observations. The model consists of a highly twisted loop embedded in a region of uniform and untwisted coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) without accounting for mass exchange with the chromosphere. We then deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly adiabatic. Ohmic diffusion takes over as the instability saturates, leading to strong and impulsive heating (> 20 MK), to a quick enhancement of X-ray emission and to the hardening of the thermal X-ray spectrum. The temperature distribution of the plasma becomes broad, with the emission measure depending strongly on temperature. Significant emission measures arise for plasma at temperatures T > 9 MK. The magnetic flux-rope then relaxes progressively towards a lower energy state as it reconnects with the background flux. The loop plasma suffers smaller sporadic heating events but cools down conductively. The total thermal X-ray emission slowly fades away during this phase, and the high temperature component of emission measure distribution converges to the power-law distribution EMT4.2EM\propto T^{-4.2}. The amount of twist deduced directly from the X-ray emission patterns is considerably lower than the maximum magnetic twist in the simulated flux-ropes.Comment: submitted to A&

    Fabrication and characterization of a polymeric microcantilever with an encapsulated hotwire CVD polysilicon piezoresistor

    Get PDF
    We demonstrate a novel photoplastic nanoelectromechanical device that includes an encapsulated polysilicon piezoresistor. The temperature limitation that typically prevents deposition of polysilicon films on polymers was overcome by employing a hotwire CVD process. In this paper, we report the use of this process to fabricate and characterize a novel polymeric cantilever with an embedded piezoresistor. This device exploits the low Young's modulus of organic polymers and the high gauge factor of polysilicon. The fabricated device fits into the cantilever holder of an atomic force microscope (AFM) and can be used in conjunction with the AFM's liquid cell for detecting the adsorption of biochemicals. It enables differential measurement while preventing biochemicals from interfering with measurements using the piezoresistor. The mechanical and electromechanical characterization of the device is also reported in this paper

    Noncommutative Geometry and Cosmology

    Full text link
    We study some consequences of noncommutativity to homogeneous cosmologies by introducing a deformation of the commutation relation between the minisuperspace variables. The investigation is carried out for the Kantowski-Sachs model by means of a comparative study of the universe evolution in four different scenarios: the classical commutative, classical noncommutative, quantum commutative, and quantum noncommutative. The comparison is rendered transparent by the use of the Bohmian formalism of quantum trajectories. As a result of our analysis, we found that noncommutativity can modify significantly the universe evolution, but cannot alter its singular behavior in the classical context. Quantum effects, on the other hand, can originate non-singular periodic universes in both commutative and noncommutative cases. The quantum noncommutative model is shown to present interesting properties, as the capability to give rise to non-trivial dynamics in situations where its commutative counterpart is necessarily static.Comment: 22 pages, 5 figures, substantial changes in the presentation, results are the same, to appear in Physical Review

    Finite size analysis of a two-dimensional Ising model within a nonextensive approach

    Full text link
    In this work we present a thorough analysis of the phase transitions that occur in a ferromagnetic 2D Ising model, with only nearest-neighbors interactions, in the framework of the Tsallis nonextensive statistics. We performed Monte Carlo simulations on square lattices with linear sizes L ranging from 32 up to 512. The statistical weight of the Metropolis algorithm was changed according to the nonextensive statistics. Discontinuities in the m(T) curve are observed for q0.5q\leq 0.5. However, we have verified only one peak on the energy histograms at the critical temperatures, indicating the occurrence of continuous phase transitions. For the 0.5<q1.00.5<q\leq 1.0 regime, we have found continuous phase transitions between the ordered and the disordered phases, and determined the critical exponents via finite-size scaling. We verified that the critical exponents α\alpha , β\beta and γ\gamma depend on the entropic index qq in the range 0.5<q1.00.5<q\leq 1.0 in the form α(q)=(10q233q+23)/20\alpha (q)=(10 q^{2}-33 q+23)/20, β(q)=(2q1)/8\beta (q)=(2 q-1)/8 and γ(q)=(q2q+7)/4\gamma (q)=(q^{2}-q+7)/4. On the other hand, the critical exponent ν\nu does not depend on qq. This suggests a violation of the scaling relations 2β+γ=dν2 \beta +\gamma =d \nu and α+2β+γ=2\alpha +2 \beta +\gamma =2 and a nonuniversality of the critical exponents along the ferro-paramagnetic frontier.Comment: accepted for publication in Phys. Rev.

    Influence of the external pressure on the quantum correlations of molecular magnets

    Full text link
    The study of quantum correlations in solid state systems is a large avenue for research and their detection and manipulation are an actual challenge to overcome. In this context, we show by using first-principles calculations on the prototype material KNaCuSi4_{4}O10_{10} that the degree of quantum correlations in this spin cluster system can be managed by external hydrostatic pressure. Our results open the doors for research in detection and manipulation of quantum correlations in magnetic systems with promising applications in quantum information science

    Cent CORE: Centralized Cloud Oriented Requirement Engineering Strategy for Tracking and Elicitation of Dynamic Requirements

    Get PDF
    Requirement Engineering is one of the most important stages of Software Engineering. Eliciting requirements is highly critical and a complex process as the software end product totally depends on the quality of requirements that were collected. The property of the requirements is dynamic that keeps changing and constantly evolving. The Traditional Strategies for Requirement Engineering lacked organization and change management was entirely manual which consumed a lot of time and skilled labor. A centralized strategy for Elicitation of Dynamic Requirements using the concept of Requirement Cloud is proposed with high level of organization and structuring. A novel idea of using Cloud Storage Service for Requirement Engineering is implemented using a heuristics approach. Change management is incorporated and a few activities like requirements document generation is automated in this approach. Finally a survey between the Traditional Requirement Engineering and Proposed Cloud Methodology is conducted to prove the proposed methodology is better than the traditional strategies of Requirement Engineering

    Quantum Cosmology in Scalar-Tensor Theories With Non Minimal Coupling

    Get PDF
    Quantization in the minisuperspace of non minimal scalar-tensor theories leads to a partial differential equation which is non separable. Through a conformal transformation we can recast the Wheeler-DeWitt equation in an integrable form, which corresponds to the minimal coupling case, whose general solution is known. Performing the inverse conformal transformation in the solution so found, we can construct the corresponding one in the original frame. This procedure can also be employed with the bohmian trajectories. In this way, we can study the classical limit of some solutions of this quantum model. While the classical limit of these solutions occurs for small scale factors in the Einstein's frame, it happens for small values of the scalar field non minimally coupled to gravity in the Jordan's frame, which includes large scale factors.Comment: latex, 18 page

    Precision stellar radial velocity measurements with FIDEOS at the ESO 1-m telescope of La Silla

    Full text link
    We present results from the commissioning and early science programs of FIDEOS, the new high-resolution echelle spectrograph developed at the Centre of Astro Engineering of Pontificia Universidad Catolica de Chile, and recently installed at the ESO 1m telescope of La Silla. The instrument provides spectral resolution R = 43,000 in the visible spectral range 420-800 nm, reaching a limiting magnitude of 11 in V band. Precision in the measurement of radial velocity is guaranteed by light feeding with an octagonal optical fibre, suitable mechanical isolation, thermal stabilisation, and simultaneous wavelength calibration. Currently the instrument reaches radial velocity stability of = 8 m/s over several consecutive nights of observation
    corecore