2,723 research outputs found

    Observations of cosmic ray induced phosphenes

    Get PDF
    Phosphene observations by astronauts on flights near and far from earth atmosphere are discussed. It was concluded that phosphenes could be observed by the naked eye. Further investigation is proposed to determine realistic human tolerance levels for extended missions and to evaluate the need to provide special spacecraft shielding

    (1+1)-Dimensional Yang-Mills Theory Coupled to Adjoint Fermions on the Light Front

    Get PDF
    We consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z_2, which possesses nontrivial topology. In particular, there are two distinct topological sectors and the physical vacuum state has a structure analogous to a \theta vacuum. We show how this feature is realized in light-front quantization, with periodicity conditions used to regulate the infrared and treating the gauge field zero mode as a dynamical quantity. We find expressions for the degenerate vacuum states and construct the analog of the \theta vacuum. We then calculate the bilinear condensate in the model. We argue that the condensate does not affect the spectrum of the theory, although it is related to the string tension that characterizes the potential between fundamental test charges when the dynamical fermions are given a mass. We also argue that this result is fundamentally different from calculations that use periodicity conditions in x^1 as an infrared regulator.Comment: 20 pages, Revte

    Simulation of Dimensionally Reduced SYM-Chern-Simons Theory

    Get PDF
    A supersymmetric formulation of a three-dimensional SYM-Chern-Simons theory using light-cone quantization is presented, and the supercharges are calculated in light-cone gauge. The theory is dimensionally reduced by requiring all fields to be independent of the transverse dimension. The result is a non-trivial two-dimensional supersymmetric theory with an adjoint scalar and an adjoint fermion. We perform a numerical simulation of this SYM-Chern-Simons theory in 1+1 dimensions using SDLCQ (Supersymmetric Discrete Light-Cone Quantization). We find that the character of the bound states of this theory is very different from previously considered two-dimensional supersymmetric gauge theories. The low-energy bound states of this theory are very ``QCD-like.'' The wave functions of some of the low mass states have a striking valence structure. We present the valence and sea parton structure functions of these states. In addition, we identify BPS-like states which are almost independent of the coupling. Their masses are proportional to their parton number in the large-coupling limit.Comment: 18pp. 7 figures, uses REVTe

    Numerical Simulations of N=(1,1) SYM{1+1} with Large Supersymmetry Breaking

    Get PDF
    We consider the N=(1,1)N=(1,1) SYM theory that is obtained by dimensionally reducing SYM theory in 2+1 dimensions to 1+1 dimensions and discuss soft supersymmetry breaking. We discuss the numerical simulation of this theory using SDLCQ when either the boson or the fermion has a large mass. We compare our result to the pure adjoint fermion theory and pure adjoint boson DLCQ calculations of Klebanov, Demeterfi, and Bhanot and of Kutasov. With a large boson mass we find that it is necessary to add additional operators to the theory to obtain sensible results. When a large fermion mass is added to the theory we find that it is not necessary to add operators to obtain a sensible theory. The theory of the adjoint boson is a theory that has stringy bound states similar to the full SYM theory. We also discuss another theory of adjoint bosons with a spectrum similar to that obtained by Klebanov, Demeterfi, and Bhanot.Comment: 12 pages, 4 figure

    Quantum Mechanics of Dynamical Zero Mode in QCD1+1QCD_{1+1} on the Light-Cone

    Get PDF
    Motivated by the work of Kalloniatis, Pauli and Pinsky, we consider the theory of light-cone quantized QCD1+1QCD_{1+1} on a spatial circle with periodic and anti-periodic boundary conditions on the gluon and quark fields respectively. This approach is based on Discretized Light-Cone Quantization (DLCQ). We investigate the canonical structures of the theory. We show that the traditional light-cone gauge A=0A_- = 0 is not available and the zero mode (ZM) is a dynamical field, which might contribute to the vacuum structure nontrivially. We construct the full ground state of the system and obtain the Schr\"{o}dinger equation for ZM in a certain approximation. The results obtained here are compared to those of Kalloniatis et al. in a specific coupling region.Comment: 19 pages, LaTeX file, no figure

    Biofluid modeling of the coupled eye-brain system and insights into simulated microgravity conditions

    Get PDF
    This work aims at investigating the interactions between the flow of fluids in the eyes and the brain and their potential implications in structural and functional changes in the eyes of astronauts, a condition also known as spaceflight associated neuro-ocular syndrome (SANS). To this end, we propose a reduced (0-dimensional) mathematical model of fluid flow in the eyes and brain, which is embedded into a simplified whole-body circulation model. In particular, the model accounts for: (i) the flows of blood and aqueous humor in the eyes; (ii) the flows of blood, cerebrospinal fluid and interstitial fluid in the brain; and (iii) their interactions. The model is used to simulate variations in intraocular pressure, intracranial pressure and blood flow due to microgravity conditions, which are thought to be critical factors in SANS. Specifically, the model predicts that both intracranial and intraocular pressures increase in microgravity, even though their respective trends may be different. In such conditions, ocular blood flow is predicted to decrease in the choroid and ciliary body circulations, whereas retinal circulation is found to be less susceptible to microgravity-induced alterations, owing to a purely mechanical component in perfusion control associated with the venous segments. These findings indicate that the particular anatomical architecture of venous drainage in the retina may be one of the reasons why most of the SANS alterations are not observed in the retina but, rather, in other vascular beds, particularly the choroid. Thus, clinical assessment of ocular venous function may be considered as a determinant SANS factor, for which astronauts could be screened on earth and in-flight

    Vacuum Structure of Two-Dimensional Gauge Theories on the Light Front

    Get PDF
    We discuss the problem of vacuum structure in light-front field theory in the context of (1+1)-dimensional gauge theories. We begin by reviewing the known light-front solution of the Schwinger model, highlighting the issues that are relevant for reproducing the θ\theta-structure of the vacuum. The most important of these are the need to introduce degrees of freedom initialized on two different null planes, the proper incorporation of gauge field zero modes when periodicity conditions are used to regulate the infrared, and the importance of carefully regulating singular operator products in a gauge-invariant way. We then consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z2/Z_2, which possesses nontrivial topology. In particular, there are two topological sectors and the physical vacuum state has a structure analogous to a θ\theta vacuum. We formulate the model using periodicity conditions in x±x^\pm for infrared regulation, and consider a solution in which the gauge field zero mode is treated as a constrained operator. We obtain the expected Z2Z_2 vacuum structure, and verify that the discrete vacuum angle which enters has no effect on the spectrum of the theory. We then calculate the chiral condensate, which is sensitive to the vacuum structure. The result is nonzero, but inversely proportional to the periodicity length, a situation which is familiar from the Schwinger model. The origin of this behavior is discussed.Comment: 29 pages, uses RevTeX. Improved discussion of the physical subspace generally and the vacuum states in particular. Basic conclusions are unchanged, but some specific results are modifie

    On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation

    Get PDF
    SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction. On the light-cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light-cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum mechanical potential governing the dynamical gauge mode. Due to a condensation of the lowest omentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory however, the barrier height appears too small to make any impact in this odel. Although the theory is superrenormalisable on naive powercounting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The open aspects of this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure

    Wave functions and properties of massive states in three-dimensional supersymmetric Yang-Mills theory

    Get PDF
    We apply supersymmetric discrete light-cone quantization (SDLCQ) to the study of supersymmetric Yang-Mills theory on R x S^1 x S^1. One of the compact directions is chosen to be light-like and the other to be space-like. Since the SDLCQ regularization explicitly preserves supersymmetry, this theory is totally finite, and thus we can solve for bound-state wave functions and masses numerically without renormalizing. We present an overview of all the massive states of this theory, and we see that the spectrum divides into two distinct and disjoint sectors. In one sector the SDLCQ approximation is only valid up to intermediate coupling. There we find a well defined and well behaved set of states, and we present a detailed analysis of these states and their properties. In the other sector, which contains a completely different set of states, we present a much more limited analysis for strong coupling only. We find that, while these state have a well defined spectrum, their masses grow with the transverse momentum cutoff. We present an overview of these states and their properties.Comment: RevTeX, 25 pages, 16 figure
    corecore