284 research outputs found

    Reparameterization of RNA χ Torsion Parameters for the AMBER Force Field and Comparison to NMR Spectra for Cytidine and Uridine

    Get PDF
    A reparameterization of the torsional parameters for the glycosidic dihedral angle, χ, for the AMBER99 force field in RNA nucleosides is used to provide a modified force field, AMBER99χ. Molecular dynamics simulations of cytidine, uridine, adenosine, and guanosine in aqueous solution using the AMBER99 and AMBER99χ force fields are compared with NMR results. For each nucleoside and force field, 10 individual molecular dynamics simulations of 30 ns each were run. For cytidine with AMBER99χ force field, each molecular dynamics simulation time was extended to 120 ns for convergence purposes. Nuclear magnetic resonance (NMR) spectroscopy, including one-dimensional (1D) 1H, steady-state 1D 1H nuclear Overhauser effect (NOE), and transient 1D 1H NOE, was used to determine the sugar puckering and preferred base orientation with respect to the ribose of cytidine and uridine. The AMBER99 force field overestimates the population of syn conformations of the base orientation and of C2′-endo sugar puckering of the pyrimidines, while the AMBER99χ force field’s predictions are more consistent with NMR results. Moreover, the AMBER99 force field prefers high anti conformations with glycosidic dihedral angles around 310° for the base orientation of purines. The AMBER99χ force field prefers anti conformations around 185°, which is more consistent with the quantum mechanical calculations and known 3D structures of folded ribonucleic acids (RNAs). Evidently, the AMBER99χ force field predicts the structural characteristics of ribonucleosides better than the AMBER99 force field and should improve structural and thermodynamic predictions of RNA structures

    Particulate Fillers in Thermoplastics

    Get PDF
    The characteristics of particulate filled thermoplastics are determined by four factors: component properties, composition, structure and interfacial interactions. The most important filler characteristics are particle size, size distribution, specific surface area and particle shape, while the main matrix property is stiffness. Segregation, aggregation and the orientation of anisotropic particles determine structure. Interfacial interactions lead to the formation of a stiff interphase considerably influencing properties. Interactions are changed by surface modification, which must be always system specific and selected according to its goal. Under the effect of external load inhomogeneous stress distribution develops around heterogeneities, which initiate local micromechanical deformation processes determining the macroscopic properties of the composites

    Focus. La coltura del grano duro

    No full text
    La coltura del grano duro mostra, in questi ultimi anni, notevoli variazioni, sia per quanto riguarda le superfici investite che per le produzioni. Considerando i dati produttivi dal 2005 al 2007 si nota come gli ettari investiti a grano duro (e di conseguenza i quantitativi raccolti) in Emilia Romagna e in provincia di Ferrara siano andati progressivamente aumentando, in controtendenza con i valori a livello nazionale. L'incremento delle aree coltivate a duro nel Nord Italia \ue8 da attribuire, oltre alle favorevoli quotazioni, anche alla diffusione dei contratti di coltivazione
    corecore