286 research outputs found

    Giant crystal-electric-field effect and complex magnetic behavior in single-crystalline CeRh3Si2

    Full text link
    Single-crystalline CeRh3Si2 was investigated by means of x-ray diffraction, magnetic susceptibility, magnetization, electrical resistivity, and specific heat measurements carried out in wide temperature and magnetic field ranges. Moreover, the electronic structure of the compound was studied at room temperature by cerium core-level x-ray photoemission spectroscopy (XPS). The physical properties were analyzed in terms of crystalline electric field and compared with results of ab-initio band structure calculations performed within the density functional theory approach. The compound was found to crystallize in the orthorhombic unit cell of the ErRh3Si2 type (space group Imma -- No.74, Pearson symbol: oI24) with the lattice parameters: a = 7.1330(14) A, b = 9.7340(19) A, and c = 5.6040(11) A. Analysis of the magnetic and XPS data revealed the presence of well localized magnetic moments of trivalent cerium ions. All physical properties were found to be highly anisotropic over the whole temperature range studied, and influenced by exceptionally strong crystalline electric field with the overall splitting of the 4f1 ground multiplet exceeding 5700 K. Antiferromagnetic order of the cerium magnetic moments at TN = 4.70(1)K and their subsequent spin rearrangement at Tt = 4.48(1) K manifest themselves as distinct anomalies in the temperature characteristics of all investigated physical properties and exhibit complex evolution in an external magnetic field. A tentative magnetic B-T phase diagram, constructed for B parallel to the b-axis being the easy magnetization direction, shows very complex magnetic behavior of CeRh3Si2, similar to that recently reported for an isostructural compound CeIr3Si2. The electronic band structure calculations corroborated the antiferromagnetic ordering of the cerium magnetic moments and well reproduced the experimental XPS valence band spectrum.Comment: 32 pages, 12 figures, to appear in Physical Review

    Violation of critical universality at the antiferromagnetic phase transition of YbRh2Si2

    Full text link
    We report on precise low-temperature specific-heat measurements, C(T), of YbRh2Si2 in the vicinity of the antiferromagnetic phase transition on a single crystal of superior quality (RRR 150). We observe a very sharp peak at T_N=72mK with absolute values as high as C/T=8J/molK^2. A detailed analysis of the critical exponent \alpha around T_N reveals \alpha=0.38 which differs significantly from those of the conventional universality classes in the Ginzburg-Landau theory, where \alpha<0.11. Thermal-expansion measurements corroborate this large positive critical exponent. These results provide insight into the nature of the critical magnetic fluctuations at a temperature-driven phase transition close to a quantum critical point.Comment: Accepted for PR

    The effect of Camelina sativa cake diet supplementation on sensory and volatile profiles of ewe’s milk

    Get PDF
    The aim of this study was to evaluate the sensory profile based on the principal component analysis (PCA) and cluster analysis of Euclidean distances as well as evaluate a volatile profile in ewes’ milk. The analysis was conducted using SPME GC/TOFMS. Tested milk came from ewes fed concentrate supplemented with 10 and 20% Camelina sativa (L.) Crantz cake (CSC). This plant containing unsaturated fatty acids as well as natural antioxidants (for example, tocopherol), may constitute an excellent source of energy in the feed ratio for animals, at the same time improving the composition of fatty acids in milk fats. Milk of ewes fed CSC had a distinct animal, grainy and processed aroma. After pasteurization, the cooked and dairy fat aroma intensified. At the same time the overall dairy aroma, highly characteristic of the control milk, was considerably reduced. An addition of CSC to the diet of ewes resulted in an increase in the content of volatiles, primarily fatty acids. The applied milk pasteurization had a significant effect on a further increase in the contents of volatiles. First of all furans, furanones and furfural, being the Maillard reaction products, were accumulated.Key words: Sheep milk, sensory analysis, flavor analysis, volatiles in milk

    Shape anisotropy effect on magnetic domain wall dynamics in nanowires under thermal gradient

    Full text link
    We investigate the magnetic-domain wall (DW) dynamics in uniaxial/biaxial-nanowires under a thermal gradient (TG). The findings reveal that the DW propagates toward the hotter region in both nanowires. In uniaxial-nanowire, the DW propagates accompanying a rotation of the DW-plane. In biaxial nanowire, DW propagates in the hotter region, and the so-called Walker breakdown phenomenon is observed. The main physics of such DW dynamics is the magnonic angular momentum transfer to the DW. The hard (shape) anisotropy exists in biaxial-nanowire, which contributes an additional torque; hence DW speed is larger than that in uniaxial-nanowire. But rotational speed is lower initially as hard anisotropy suppresses the DW-rotation. After certain TG, DW-plane overcomes the hard anisotropy; thus, the rotational speed increases again. DW dynamics show a decreasing trend with the damping since the magnon propagation length decreases. Therefore, the above findings might be useful to realize the spintronics (i.e., fast racetrack memory) devices

    Crop and Soil Response to Long-Term Tillage Practices in the Northern Great Plains

    Get PDF
    Summer fallow is the most common cultural practice in the northern Great Plains. With proper cultural management, however, annual cropping may be feasible and economical. Our objective was to determine crop and soil response to nontraditional annual cropping practices (till and no-till) in lieu of conventional fallow-crop rotation for the production of spring wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in the northern Great Plains. The study, initiated in 1983, was on a Dooley sandy loam (fine-loamy, mixed Typic Argiboroll) 11 km north of Culbertson, MT. Tillage practices on annually cropped treatments included sweep tillage in autumn and disk tillage in spring; sweep tillage in spring; and no-tillage. Conventional fallow-spring wheat rotations were included as the control. With three exceptions, there were no statistical differences among treatments in soil P, soil nitrate N, and pH. Phosphorus and N were nonlimiting in all years; pH decreased about 0.06 units per year in the 0- to 8-cm layer because of N fertilization. Bulk density differences in the 0- to 10-cm layer appeared after 7 yr, with the lowest bulk density for the no-tillage annual crop treatment. Grain and straw yields with the no-tillage treatment were both 80% of yields with the fallow-crop treatment. Total water use efficiency, based on soil water differences between harvest of one crop and harvest of the next, was significantly greater with no-tillage than with the fallow-crop treatment. Soil organic C decreased nearly 0.4 g kg I per year with the fallow-crop treatment; there was a negligible decline with the no-tillage annual crop treatment. No-tillage annual spring wheat crop production was the most efficient crop and soil management practice from the standpoint of yield, water use efficiency, soil organic C, and bulk density

    Cropping system effects on soil quality in the Great Plains: Synthesis from a regional project

    Get PDF
    Soils perform a number of essential functions affecting management goals. Soil functions were assessed by measuring physical, chemical, and biological properties in a regional assessment of conventional (CON) and alternative (ALT) management practices at eight sites within the Great Plains. The results, reported in accompanying papers, provide excellent data for assessing how management practices collectively affect agronomic and environmental soil functions that benefit both farmers and society. Our objective was to use the regional data as an input for two new assessment tools to evaluate their potential and sensitivity for detecting differences (aggradation or degradation) in management systems. The soil management assessment framework (SMAF) and the agro-ecosystem performance assessment tool (AEPAT) were used to score individual soil properties at each location relative to expected conditions based on inherent soil-forming factors and to compute index values that provide an overall assessment of the agronomic and environmental impact of the CON and ALT practices. SMAF index values were positively correlated with grain yield (an agronomic function) and total organic matter (an agronomic and environmental function). They were negatively correlated with soil nitrate concentration at harvest (an indicator of environmental function). There was general agreement between the two assessment tools when used to compare management practices. Users can measure a small number of soil properties and use one of these tools to easily assess the effectiveness of soil management practices. A higher score in either tool identifies more environmentally and agronomically sustainable management. Temporal variability in measured indicators makes dynamic assessments of management practices essential. Water-filled pore space, aggregate stability, particulate organic matter, and microbial biomass were sensitive to management and should be included in studies aimed at improving soil management. Reductions in both tillage and fallow combined with crop rotation has resulted in improved soil function (e.g., nutrient cycling, organic C content, and productivity) throughout the Great Plains

    Lentil green manure as fallow replacement in the semiarid northern Great Plains

    Get PDF
    Green manures (GM) may offset inorganic N needs and improve soil quality. Study objectives were to determine effects of green manure on soil-N fertility, water use, soil quality, and yield of spring wheat (Triticum aestivum L.). On two treatments, lentil (Lens culinaris Medikus cv. Indianhead) was green manured in a green manure–spring wheat rotation. Lentil was killed by disking (GMMF) or chemicals (GMCF). Additional treatments were annually cropped wheat (AW) in a mechanical fallow (MF) or chemical fallow (CF) sequence. No inorganic N was used on GMMF and GMCF. Experiments were started in 1991 on a Williams loam (fine-loamy, mixed Typic Argiboroll) near Culbertson, MT. Green-manure treatments used 56 mm more water than fallow treatments when lentil was grown to lower-pod set. When lentil was killed at full bloom, there were no differences in water use among GM and fallow treatments. There were no differences among treatments in soil water at wheat planting. Wheat yield was 25% less on GM than on MF and CF. Soil NO 3–N (0-0.6 m) was 35% less on GM than MF and CF rotations. There were no differences in soil quality indicators of bulk density, organic C, pH, electrical conductivity, and deep NO3–N (0.6 –1.8 m) among treatments after two cycles of GM. Potentially mineralizable N was 66% greater on GM treatments than on fallow treatments. Short-term results (5 yr) show that available N limited wheat production more than did soil water on the GM treatments. Soil improvement using green manures may require many additional cropping cycles
    • …
    corecore