2,675 research outputs found

    Optical effects of regolith processes on S asteroids as simulated by laser impulse alteration of ordinary chondrite

    Get PDF
    The spectral properties of some powdered chondrites and minerals altered by Isser impulse are studied in order to estimate possible optical effects of regolith processes (micrometeoritic bombardment). Gradual reduction of overall reflectance and spectral contrast, the increase of continuum slope, the increase of spectrally derived olivine/pyroxene ratio and Fs content of orthopyroxene with increasing alteration degree show that regolith processes could affect optical properties of surface material more heavily than has been previously appreciated. Ordinary chondrites (OC's) are known to account for 80 percent of observed meteorite falls, but so far no main belt parent bodies have been identified for these meteorites. S-asteroids resemble OC's spectrally, but are characterized by a steeper red continuum unlike that of OC's and their spectrally derived mineralogies are far outside OC range. Attempts were made to explain the spectral mismatch between OC's and S asteroids by some process, which alters optical properties of uppermost regolith. However, the spectral studies of shocked (black) OC's, gas-rich OC's, melted OC's and synthetic metal-rich regoliths derived from OC's demonstrate that such altered OC materials darken, but do not redden

    Noise and dynamical pattern selection

    Full text link
    In pattern forming systems such as Rayleigh-Benard convection or directional solidification, a large number of linearly stable, patterned steady states exist when the basic, simple steady state is unstable. Which of these steady states will be realized in a given experiment appears to depend on unobservable details of the system's initial conditions. We show, however, that weak, Gaussian white noise drives such a system toward a preferred wave number which depends only on the system parameters and is independent of initial conditions. We give a prescription for calculating this wave number, analytically near the onset of instability and numerically otherwise.Comment: 12 pages, REVTEX, no figures. Submitted to Phys. Rev. Let

    The Benefits of Sample Return: Connecting Apollo Soils and Diviner Lunar Radiometer Remote Sensing Data

    Get PDF
    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. We find that analyses of Diviner observations of individual sampling stations and SLE measurements of returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under terrestrial conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional dataset. Future work includes measurement of additional soils in SLE and cross comparisons with measurements in JPL Simulated Airless Body Emission Laboratory (SABEL)

    Connecting Returned Apollo Soils and Remote Sensing: Application to the Diviner Lunar Radiometer

    Get PDF
    The Diviner Lunar Radiometer, onboard NASA's Lunar Reconnaissance Orbiter, has produced the first global, high resolution, thermal infrared observations of an airless body. The Moon, which is the most accessible member of this most abundant class of solar system objects, is also the only body for which we have extraterrestrial samples with known spatial context, returned Apollo samples. Here we present the results of a comprehensive study to reproduce an accurate simulated lunar environment, evaluate the most appropriate sample and measurement conditions, collect thermal infrared spectra of a representative suite of Apollo soils, and correlate them with Diviner observations of the lunar surface. It has been established previously that thermal infrared spectra measured in simulated lunar environment (SLE) are significantly altered from spectra measured under terrestrial or martian conditions. The data presented here were collected at the University of Oxford Simulated Lunar Environment Chamber (SLEC). In SLEC, we simulate the lunar environment by: (1) pumping the chamber to vacuum pressures (less than 104 mbar) sufficient to simulate lunar heat transport processes within the sample, (2) cooling the chamber with liquid nitrogen to simulate radiation to the cold space environment, and (3) heating the samples with heaters and lamp to setup thermal gradients similar to those experienced in the upper hundreds of microns of the lunar surface. We then conducted a comprehensive suite of experiments using different sample preparation and heating conditions on Apollo soils 15071 (maria) and 67701 (highland) and compared the results to Diviner noontime data to select the optimal experimental conditions. This study includes thermal infrared SLE measurements of 10084 (A11 - LM), 12001 (A12 - LM), 14259 (A14 - LM), 15071 (A15 - S1), 15601 (A15 - S9a), 61141 (A16 - S1), 66031 (A16 - S6), 67701 (A16 - S11), and 70181 (A17 - LM). The Diviner dataset includes all six Apollo sites at approximately 200 m spatial resolution We find that analyses of Diviner observations of individual sampling stations and SLE measurements returned Apollo soils show good agreement, while comparisons to thermal infrared reflectance under ambient conditions do not agree well, which underscores the need for SLE measurements and validates the Diviner compositional measurement technique

    Current state of interventional radiotherapy (brachytherapy) education in Italy: Results of the INTERACTS survey

    Get PDF
    Purpose: Increased complexity of interventional radiotherapy (brachytherapy - BT) treatment planning and quality control procedures has led to the need of a specific training. However, the details of the features of BT learning objectives and their distribution in the training paths of the Italian Radiation Oncology Schools are not known. This paper aims to provide the actual 'state-of-the-art' of BT education in Italy and to stimulate the debate on this issue.Material and methods: All the Italian radiation oncology schools' directors (SD) were involved in a web survey, which included questions on the teaching of BT, considering also the 2011 ESTRO core curriculum criteria. The survey preliminary results were discussed at the 8th Rome INTER-MEETING (INTERventional Radiotherapy Multidisciplinary Meeting), June 24th, 2017. The present paper describes the final results of the survey and possible future teaching strategies resulting from the discussion.Results: A total of 23 SDs answered the survey. The results evidenced a wide heterogeneity in the learning activities available to trainees in BT across the country. While theoretical knowledge is adequately and homogeneously transmitted to trainees, the types of practice to which they are exposed varies significantly among different schools.Conclusions: This survey proves the need for an improvement of practical BT education in Italy and the advisability of a national BT education programme networking schools of different Universities. Beside the organization of national/international courses for BT practical teaching, Universities may also establish post-specialization courses ('second level' Masters) to allow professionals (already certified in radiation oncology) to acquire more advanced BT knowledge

    Pyroclastic Deposits in Floor-Fractured Craters: A Unique Style or Lunar Basaltic Volcanism?

    Get PDF
    The lunar maria were formed by effusive fissure flows of low-viscosity basalt. Regional pyroclastic deposits were formed by deep-sourced fire-fountain eruptions dominated by basaltic glass. Basaltic material is also erupted from small vents within floor-fractured impact craters. These craters are characterized by shallow, flat floors cut by radial, concentric and/or polygonal fractures. Schultz [1] identified and classified over 200 examples. Low albedo pyroclastic deposits originate from depressions along the fractures in many of these craters

    Pyroclastic Deposits in the Floor-fractured Crater Alphonsus

    Get PDF
    Alphonsus, the 118 km diameter floor-fractured crater, is located immediately east of Mare Nubium. Eleven pyroclastic deposits have been identified on the crater's floor. Early telescopic spectra suggest that the floor of Alphonsus is noritic, and that the pyroclastic deposits contain mixtures of floor material and a juvenile component including basaltic glass. Head and Wilson contend that Nubium lavas intruded the breccia zone beneath Alphonsus, forming dikes and fractures on the crater floor. In this model, the magma ascended to the level of the mare but cooled underground, and a portion broke thru to the surface in vulcanian (explosive) eruptions. Alternatively, the erupted material could be from a source unrelated to the mare, in the style of regional pyroclastic deposits. High-resolution images and spectroscopy from the Moon Mineralogy Mapper (M3), Diviner Lunar Radiometer, and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (NAC) provide data to test these formation models. Spectra from M3 confirm that the crater floor is primarily composed of noritic material, and that the Nubium lavas are basaltic. Spectra from the three largest pyroclastic deposits in Alphonsus are consistent with a minor low- Ca pyroxene component in a glass-rich matrix. The centers of the 2 micron absorption bands have wavelengths too short to be of the same origin as the Nubium basalts. Diviner Christiansen feature (CF) values were used to estimate FeO abundances for the crater floor, Nubium soil, and pyroclastic deposits. The estimated abundance for the crater floor (7.5 +/- 1.4 wt.%) is within the range of FeO values for Apollo norite samples. However, the estimated FeO abundance for Nubium soil (13.4 +/- 1.4 wt.%) is lower than those measured in most mare samples. The difference may reflect contamination of the mare soil by highland ejecta. The Diviner-derived FeO abundance for the western pyroclastic deposit is 13.8 +/- 3.3 wt.%. This is lower than the values for mare soil samples, but within the range of analyzed pyroclastic glasses. The NAC images of the pyroclastic vents highlight their bright wall materials. The M3 spectra of the southeastern vent indicate that this bright material is noritic, likely crater floor material exposed by explosive eruption. These observations address the hypothesis that Nubium lavas intruded the fracture network beneath Alphonsus, leading to localized vulcanian-style eruptions. This model implies that the eruption products should be dominated by crystalline basalt fragments similar in elemental composition and mineralogy to mare lavas. The bright noritic material exposed in the vent walls is consistent with explosive eruptions. The estimated FeO abundances for the pyroclastic deposits are too low to be consistent with FeO abundances measured in mare basalts, but are within the range of pyroclastic glass samples. The visible- to near-infrared (VIS-NIR) spectra of the pyroclastic deposits and Nubium soils are significantly different, suggesting that the pyroclastics are unrelated to the mare basalts. The pyroclastic spectra are consistent with Fe-bearing glass plus small amounts of noritic wall rock. Similar glassy materials dominate regional pyroclastic deposits, suggesting a deep source for the pyroclastics observed in Alphonsus

    Regular dendritic patterns induced by non-local time-periodic forcing

    Full text link
    The dynamic response of dendritic solidification to spatially homogeneous time-periodic forcing has been studied. Phase-field calculations performed in two dimensions (2D) and experiments on thin (quasi 2D) liquid crystal layers show that the frequency of dendritic side-branching can be tuned by oscillatory pressure or heating. The sensitivity of this phenomenon to the relevant parameters, the frequency and amplitude of the modulation, the initial undercooling and the anisotropies of the interfacial free energy and molecule attachment kinetics, has been explored. It has been demonstrated that besides the side-branching mode synchronous with external forcing as emerging from the linear Wentzel-Kramers-Brillouin analysis, modes that oscillate with higher harmonic frequencies are also present with perceptible amplitudes.Comment: 15 pages, 23 figures, Submitted to Phys. Rev.

    TRH: Pathophysiologic and clinical implications

    Get PDF
    Thyrotropin releasing hormone is thought to be a tonic stimulator of the pituitary TSH secretion regulating the setpoint of the thyrotrophs to the suppressive effect of thyroid hormones. The peptide stimulates the release of normal and elevated prolactin. ACTH and GH may increase in response to exogenous TRH in pituitary ACTH and GH hypersecretion syndromes and in some extrapituitary diseases. The pathophysiological implications of extrahypothalamic TRH in humans are essentially unknown. The TSH response to TRH is nowadays widely used as a diganostic amplifier in thyroid diseases being suppressed in borderline and overt hyperthyroid states and increased in primary thyroid failure. In hypothyroid states of hypothalamic origin, TSH increases in response to exogenous TRH often with a delayed and/or exaggerated time course. But in patients with pituitary tumors and suprasellar extension TSH may also respond to TRH despite secondary hypothyroidism. This TSH increase may indicate a suprasellar cause for the secondary hypothyroidism, probably due to portal vessel occlusion. The TSH released in these cases is shown to be biologically inactive
    corecore