435 research outputs found

    SARS-CoV-2 infection: A role for S1P/S1P receptor signaling in the nervous system?

    Get PDF
    The recent coronavirus disease (COVID-19) is still spreading worldwide. The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the virus responsible for COVID-19, binds to its receptor angiotensin-converting enzyme 2 (ACE2), and replicates within the cells of the nasal cavity, then spreads along the airway tracts, causing mild clinical manifestations, and, in a majority of patients, a persisting loss of smell. In some individuals, SARS-CoV-2 reaches and infects several organs, including the lung, leading to severe pulmonary disease. SARS-CoV-2 induces neurological symptoms, likely contributing to morbidity and mortality through unknown mechanisms. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid with pleiotropic properties and functions in many tissues, including the nervous system. S1P regulates neurogenesis and inflammation and it is implicated in multiple sclerosis (MS). Notably, Fingolimod (FTY720), a modulator of S1P receptors, has been approved for the treatment of MS and is being tested for COVID-19. Here, we discuss the putative role of S1P on viral infection and in the modulation of inflammation and survival in the stem cell niche of the olfactory epithelium. This could help to design therapeutic strategies based on S1P-mediated signaling to limit or overcome the host–virus interaction, virus propagation and the pathogenesis and complications involving the nervous system

    A within-burst adaptive MLSE receiver for mobile TDMA cellular systems

    Get PDF

    Control of skeletal muscle atrophy associated to cancer or corticosteroids by ceramide kinase

    Get PDF
    Apart from cytokines and chemokines, sphingolipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide 1-phosphate (C1P), contribute to cancer and inflammation. Cancer, as well as other inflammatory conditions, are associated with skeletal muscle (SkM) atrophy, which is characterized by the unbalance between protein synthesis and degradation. Although the signaling pathways involved in SkM mass wasting are multiple, the regulatory role of simple sphingolipids is limited. Here, we report the impairment of ceramide kinase (CerK), the enzyme responsible for the phosphorylation of ceramide to C1P, associated with the accomplishment of atrophic phenotype in various experimental models of SkM atrophy: in vivo animal model bearing the C26 adenocarcinoma or Lewis lung carcinoma tumors, in human and murine SkM cells treated with the conditioned medium obtained from cancer cells or with the glucocorticoid dexamethasone. Notably, we demonstrate in all the three experimental approaches a drastic decrease of CerK expression. Gene silencing of CerK promotes the up-regulation of atrogin-1/MAFbx expression, which was also observed after cell treatment with C8-ceramide, a biologically active ceramide analogue. Conversely, C1P treatment significantly reduced the corticosteroid’s effects. Altogether, these findings provide evidence that CerK, acting as a molecular modulator, may be a new possible target for SkM mass regulation associated with cancer or corticosteroids

    Studying oven technology towards the energy consumption optimisation for the baking process

    Get PDF
    A recent guideline from the European Commission declared that several highly energy consuming domestic equipment should be better regulated or avoided at all in the near future. Together with this, several EU nations are abandoning the gas ovens in favour of the electric ones, also due to the home energy rating regulations, that make impossible to get the highest rating with gas ovens. Due to this fact, the study of the technologies related to the energy efficiency in cooking is increasingly developing. The combination of several energy sources (e.g. forced convection, irradiation, microwave, etc.), as well as optimisation of each of them, is an emerging target for oven manufacturers, in matter of oven design and better use of the oven capabilities. Within this context, an energy consumption analysis and optimisation is targeted in this work, by the application of a bread baking model, validated on experimental data. Each source of energy is given the due importance and the practically applicable process solutions are compared. A basic quality standard is guaranteed by taking into account some quality markers, which are relevant on the basis of a consumer point of view. This work is a part of a more comprehensive study on oven cooking and energy integration, and could lead to practical applications in the design of energy efficient cooking programs

    Crosstalk between sphingolipids and vitamin D3: potential role in the nervous system

    Get PDF
    Sphingolipids are both structural and bioactive compounds. In particular, ceramide and sphingosine 1-phosphate regulate cell fate, inflammation and excitability. 1-α,25-dihydroxyvitamin D3 (1,25(OH)2D3) is known to play an important physiological role in growth and differentiation in a variety of cell types, including neural cells, through genomic actions mediated by its specific receptor, and non-genomic effects that result in the activation of specific signalling pathways. 1,25(OH)2D3 and sphingolipids, in particular sphingosine 1-phosphate, share many common effectors, including calcium regulation, growth factors and inflammatory cytokines, but it is still not known whether they can act synergistically. Alterations in the signalling and concentrations of sphingolipids and 1,25(OH)2D3 have been found in neurodegenerative diseases and fingolimod, a structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This review, after a brief description of the role of sphingolipids and 1,25(OH)2D3, will focus on the potential crosstalk between sphingolipids and 1,25(OH)2D3 in neural cell
    • …
    corecore