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Abstract 

Sphingolipids are both structural and bioactive compounds. In particular ceramide and sphingosine 

1-phosphate regulate cell fate, inflammation, and excitability. 1-alpha,25-dihydroxyvitamin D3 

(1,25(OH)2D3), is known to play an important physiological role on growth and differentiation in a 

variety of cell types, including neural cells, through genomic actions, mediated by its specific 

receptor, and non-genomic actions resulting in the activation of specific signalling pathways. 

1,25(OH)2D3 and sphingolipids, in particular sphingosine-1-phosphate, share many common 

effectors, including calcium regulation, growth factors and inflammatory cytokines, but whether 

they could act synergistically is still unknown. Alterations in the signalling and content of 

sphingolipids and 1,25(OH)2D3 have been found in neurodegenerative diseases and fingolimod, a 

structural analogue of sphingosine, has been approved for the treatment of multiple sclerosis. This 

review, after a brief description of  the role of sphingolipids and 1,25(OH)2D3,  will focus on the 

potential crosstalk of  sphingolipids and 1,25(OH)2D3 in neural cells. 

Abbreviations:  

1,25(OH)2D3 , 1-alpha,25-dihydroxyvitamin D3; 6-OHDA: 6-hydroxydopamine; Aβ, amyloid beta 

peptide; AD, Alzheimer disease; AMPK, AMP-dependent PK; APP, amyloid precursor protein; 

BACE1, b-secretase 1; Bcl-XL, B-cell lymphoma protein extralarge; Bcl-Xs, shorter isoform of B-

cell lymphoma protein; BDNF, brain derived neurotrophic factor,  C1P, ceramide-1-phosphate; 

CBS, cystathionine-β-synthase; CDase, ceramidase; Cer, ceramide; CerK, ceramide kinase; CerS, 

ceramide synthase; CSF, cerebrospinal fluid; cGSN, cytoplasmatic gelsolin; cPLA2, cytosolic 

phospholipase A2; CNTF, ciliary neurotrophic factor; DRG: dorsal root ganglion; GBA1, lysosomal 

glucosylceramidase; GBA2: cytosolic glucosylceramidase; GC, glucosylceramide; GCS, 

Glucosylceramide synthase; GCDase, glucosylceramidase; GDNF, glial derived neutrophic factor, 

HDAC, histone deacetylases; HO, hemoxygenase; IGF-1, insulin-like growth factor 1; iNOS, 

inducible NOS; KO, Knockout; LRM, lipid rich microdomains; LRP1, low-density lipoprotein 

receptor-related protein 1; LVSCC, L-type voltage-sensitive calcium channels; MBP , myelin basic 

protein;  MPP+, 1-methyl-4-phenylpyridinium; MPTP, 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine; MS, multiple sclerosis; NADPH, Nicotinamide adenine dinucleotide phosphate; 

nd, not determined; NGF, nerve growth factor;  NR3A: NMDA receptor subunit 3A; NT-3, 

neurotrophin 3; OPC, oligodendrocyte precursor cell; PD, Parkinson disease; pGSN, plasma 

gelsolin; PHB2, prohibitin 2; PP, protein phosphatase; RAGE: receptor for advanced glycation end 

products;  S1P, sphingosine 1-phosphate; S1P(1-5)R: S1P receptor type 1-5; S1PL, S1P lyase; 

S1PR, S1P receptor; SGPPS1 PPase, S1P phosphatase, si, small interference RNA;  SL, 

sphingolipid; SM, sphingomyelin; SMase, sphingomyelinase; aSMase, acid SMase; nSMase, 
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neutral SMase; SMS, sphingomyelin synthase; Sph, sphingosine;  SPHK SphK, sphingosine kinase; 

SPL, sphingosine-1-phosphate lyase; spns2, spinster 2; TRAF2, TNF receptor-associated factor 2; 

VDCC, voltage-dependent calcium channel; VDR, 1-alpha,25-dihydroxyvitamin D3 receptor; 

VDRE, vitamin D3 response element. 

Roles of bioactive SLs in the nervous system  

Sphingolipids (SLs)  have long been regarded as inactive and stable structural components of the 

membrane but some of them including ceramide (Cer), sphingosine (Sph), ceramide-1-phosphate 

(C1P) and sphingosine-1-phosphate (S1P) are biologically active molecules. The cellular effect of 

SLs results from the combination of the effects of several interconvertible SLs (Fig. 1), which are 

localized in distinct subcellular compartments and regulate distinct cellular processes and functions, 

including neural cell survival, apoptosis, autophagy,  differentiation, migration, inflammation, and  

neurotransmitter release (see Table 1) (Colombaioni and Garcia-Gil, 2004; Mencarelli and 

Martinez-Martinez, 2012; Shamseddine et al., 2015; Ghasemi et al., 2016). 

The intracellular levels of these bioactive SLs are fine-tuned and alterations of the SL profile 

in nervous system contribute to the development of neurological and neuroinflammatory diseases 

such as  photoreceptor degeneration, retinitis pigmentosa, Alzheimer disease (AD), Parkinson (PD) 

disease, multiple sclerosis (MS) (see Table 2) and major depression, Huntington disease, and 

epilepsy (Acharya et al., 2003; Strettoi et al. 2010; Haughey et al., 2010; Grimm et al., 2013; 

Mielke et al., 2010; Pyszko and Strosznajder, 2014; Halmer et al., 2014; Desplats et al., 2007; 

Gulbins et al., 2015; Vanni et al., 2014). Moreover, inherited defects of both synthesis and 

catabolism of SLs cause varying degrees of central nervous system dysfunction such as in 

inherited sensory and autonomic neuropathy, Niemann Pick disease type A and B and 

lisosomal storage disorders (Sabourdy et al., 2015).  

The modulatory role of Cer in growth and 1,25(OH)2D3-induced differentiation was first 

reported in leukemic HL60 cells (Okazaki et al., 1989; Bielawska  et al., 1992). Twenty years ago it 

was proposed that the ratio of the intracellular content of S1P and Cer  was a major determinant of 

cell fate (Cuvillier et al., 1996): S1P enhances growth and survival, whereas its precursors (Cer and 

Sph) promote growth arrest and cell death (Colombaioni and Garcia-Gil, 2004; Mencarelli and 

Martinez-Martinez, 2012; Shamseddine et al., 2015; Ghasemi et al., 2016). However, there is 

increasing evidence showing that the Cer containing specific acyl chain lenghts (Cer species) have 

different functions (Ben-David and Futerman, 2010; Hannun and Obeid, 2011): C18:0-Cer is 
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synthesized by Cer synthase 1 (CerS1), an isoenzyme abundant in the brain, and it has been 

suggested to act as a protective factor because the lack of CerS1 caused neural death in mice 

cerebellum and impaired motor coordination (Zhao et al., 2011; Ginkel et al., 2012); however, 

CerS1 ablation decreases gangliosides levels, and  this might be one of the causes of neural cell 

death in mice (Ginkel et al., 2012). Moreover, serum deprivation-induced apoptosis in embryonic 

hippocampal cells determine the increase of C16:0-Cer and the decrease of C24:0-Cer content 

(Garcia-Gil et al., 2015). It is worth noting that compensatory mechanism can occur following gene 

knockout (KO) or decrease of protein expression by siRNA. For example, the	 treatment	 of	

neuroblastoma	 cells	 with	 CerS2	 siRNA	 results	 in	 higher	 CerS5	 and	 CerS6	 expression	 with	

reduction	 of	 C24-Cer	 and	 -SM	 and	 increase	 of	 	 C14-	 and	 C16-Cer	 levels	 	 (Spassieva	 et	 al.,	

2009).		

Other facts, in addition to the different acyl chain composition, increase the complexity of the 

study of the role of SLs on cell fate: i) S1P acts non only intracellularly, but also as ligand of 

specific G-protein coupled receptors (Maceyka et al., 2012) (Fig. 1B); ii) other SL metabolites, such 

as C1P, can also mediate apoptosis or proliferation depending on the cell type (Miranda et al., 2011, 

Bini et al., 2012, Presa et al., 2016); iii) the SL synthesis and signaling that can occur at different 

cellular compartments (Newton et al., 2015).  

 Ceramide and C1P  

The apoptotic role of Cer in the nervous system has been extensively reviewed (Garcia-Gil and 

Colombaioni, 2004; Mencarelli and Martinez-Martinez, 2012; Shamseddine et al., 2015). Cer is 

also involved in the control of autophagy (Daido et al., 2004; Spassieva et al., 2009), differentiation 

(Riboni et al., 1995), inflammation (Gu et al., 2013) and exosome release (Trajkovic et al., 2008; 

Wang et al., 2012). Generation of Cer by activation of nSMase2 is associated with increase in 

dopamine uptake (Kim et al., 2010) and modulates  excitatory postsynaptic currents by controlling 

the insertion and clustering of NMDA receptors (Wheeler et al. 2009). Moreover, Caenorhabditis 

elegans mutants lacking Cer synthase have defects in synaptic transmission and in synaptic vesicle 

cycling (Chan and Sieburth, 2012). Cer directly regulates the activity of several enzymes including 

cathepsin D, phospholipase A2,  kinase suppressor of Ras, Cer-activated protein serine–threonine 

phosphatases 1 and 2A, (PP1 and PP2A), PKC isoforms, and ion channels, such as the potassium 

channel Kv1.3 (Boch et al., 2003). It is also able to form channels in mitochondria, which are 

involved in the release of pro-apoptotic factors (Colombini et al., 2016). It directly  inhibits 

mitochondrial complex III and increases generation of  ROS (Garcia-Ruiz et al., 1997). Cer inhibits 

Akt pathway and stimulates the stress-activated kinase JNK and upregulates the apoptosis-
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promoting variants Bcl-xS and caspase-9, while correspondingly downregulating the antiapoptotic 

variants Bcl-xL and caspase-9b (Chalfant et al., 2002). 

Accumulating evidences support the involvement of Cer in the modulation of  neural 

plasticity. For example, spatial memory and extinction learning are impaired when SMase2 is 

inhibited or Cer levels are reduced (Tabatadze et al., 2010, Carrasco et al., 2012; Huston et al., 

2016). Furthermore, genetic deletion of CerS1 is associated with  deficits in motor learning and 

spatial working memory, as well as reduced anxiety (Ginkel et al., 2012).  

Astrocytes are mediators of CNS responsiveness to inflammation and injury (Claycomb et 

al., 2013). They display increased Cer following ischemia/reperfusion with nSMase2-dependent 

generation of the pro-inflammatory cytokines TNF-α, IL-1 and IL-6 (Gu et al., 2013). In neural 

stem and progenitor cells of the developing brain Cer influences cell polarity, motility and apoptosis 

(Bieberich, 2012) and induces ciliogenesis, a critical step in differentiation (He et al., 2014).  

On the other hand, the phosphorylated form of Cer, C1P, induces proliferation and promotes 

survival and differentiation of  photoreceptors in rat retina neuronal cultures  (Miranda et al., 2011), 

while inhibition or downregulation of CerK, which appears to be the only enzyme responsible for 

its synthesis, decreases proliferation in human neuroblastoma cells (Bini et al., 2012). Moreover, 

C1P directly binds and activates α-type cytosolic phospholipase A2 (cPLA2) stimulating 

arachidonic acid release (Pettus et al., 2004). Activation of cPLA2 by C1P  induces spinal neuronal 

death (Liu et al., 2014), while  treatment of SH-SY5Y cells with  TNFα increases CerK activity. 

Depleting CerK activity blocks NADPH oxidase activation and eicosanoid biosynthesis and rescues 

neuronal viability in the presence of TNFα (Barth et al., 2012). The CerK-null mouse has been 

generated. Although CerK is highly expressed in Purkinje cells, this mouse did not display 

histological abnormalities or impairment in motor coordination but  emotional behavior was slightly 

affected (Mitsutake et al., 2007).  

Outside of the nervous system, C1P stimulates migration of  macrophages via a specific plasma 

membrane receptor coupled to Gi proteins (Presa et al., 2016) and it is released from damaged 

myocardial cells possibly leading to the recruitment of stem/progenitor cells to damaged organs 

(Kim et al., 2013). Whether C1P is also released from the injured  nervous system or whether it 

induces migration in neural stem cells is unknown. 

 

S1P  

 

S1P modulates survival (Edsall et al., 1996), proliferation (Harada et al., 2004; Miranda et al., 

2009), differentiation (Toman et al., 2004; Miranda et al., 2009), cell migration (Novgorodov et al., 
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2007; Alfonso et al., 2017), calcium homeostasis (Sato et al., 2000; Giussani et al., 2007; Hagen et 

al., 2011) , neurite retraction (Toman et al., 2004), angiogenic vascular maturation (Liu et al., 2001; 

Mizugishi et al., 2005) and cytoskeleton dynamics (Postma et al., 1996; Toman et al., 2004; Jaillard 

et al., 2005) (for recent reviews see Bieberich et al., 2012; Maceyka et al., 2012, Proia and Hla 

2015, Ghasemi et al., 2016). In addition, it is able to modulate excitability (Li et al., 2015) by 

increasing glutamate release (Kajimoto et al., 2007, Kanno et al., 2011), and by regulating 

endocytosis and exocytosis (Chan and Sieburth 2012, Riganti et al., 2016).  

Regarding  S1P intracellular effects, S1P  induces calcium release from the ER, inhibits 

histone deacetylases (HDAC),   acts as a cofactor required for the E3 ligase activity of  TNF 

receptor-associated factor 2 (TRAF2), activates recombinant human PKC�, and binds  the 

mitochondrial protein prohibitin 2 (a highly conserved protein that regulates mitochondrial 

assembly and function (Maceyka et al., 2012) (Fig.2). In agreement with the role of S1P in 

proliferation, sphingosine kinase 1(SphK1) is overexpressed, while S1P lyase  is often deleted in 

human cancers, including glioblastoma (Steck et al., 1995, van Brocklyn et al., 2005). SphK1 

overexpression is associated with resistance to chemotherapeutic drugs and to a poor prognosis (van 

Brocklyn et al., 2005).  

S1P functions not only inside cells, but also as ligand for five specific-protein coupled 

receptors (as reviewed in Spiegel and Milstien, 2003). S1P can be exported outside the cells by 

transporters belonging to the ATP-binding cassette family and the putative transporter Spinster 2 

and, therefore, act as an autocrine or paracrine factor (Maceyka et al., 2012), (Fig.1B).  S1P 

receptors are expressed in CNS cells  (neurons, oligodendrocytes, astrocytes and microglia). 

Signalling through S1P receptors involves activation of Gi, Go, Gq or G12/13 (Figs. 1B and 2) and, 

therefore, signal transduction pathways involving PLC, MAPKs, PI3K/Akt, Rac, and Rho/Rho 

kinase (Spiegel and Milstien, 2003). 

The G-coupled receptors specific for S1P [S1P(1-5)R] trigger different signalling pathways 

and are expressed and localized differently during tissue development or following stimulation. : 

(i.e. S1P1 regulates migration of neural stem progenitor cells both during development (Alfonso et 

al., 2015) and  in response to injury (Kimura et al., 2007).  S1P1 is also  involved in 

oligodendrocyte  development, morphological maturation and early myelination (Jung et al., 2007; 

Dukala and Soliven, 2016 ), while the activation of S1P5 on the oligodendrocyte progenitor cells 

leads to process  retraction and inhibits migration (Jaillard et al., 2005, Novgorodov et al., 2007). 

During  nerve growth factor- (NGF)-induced neuronal differentiation there is a relocalization 

of S1PRs: while  S1P1R, which induces neurite growth is maintained in the plasma membrane, 

S1P2R is internalized (Toman et al., 2004)  to prevent loss of neurites.  Growth factors, such as 
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NGF, increase SphK activity and S1P formation and viceversa, S1P can induce growth factor 

release (Yamagata et al., 2003; Sobue et al., 2005; Murakami et al., 2007). Deletion of genes 

encoding S1P1R or both SphK1 and SphK2 in mice severely disrupts neurogenesis and 

angiogenesis leading to intrauterine death (Liu et al., 2000; Mizugishi et al., 2005) highlighting the 

role of S1P in the development of the nervous system. 

 
1,25(OH)2D3 in nervous system physiology  

The  active form of vitamin D3 has hydroxyl groups in the positions 1 and 25.  The  enzymes 1-a 

hydroxylase (CYP27B1),  required to synthesize 1,25(OH)2D3,  and the  24-hydroxylase 

(CYP24A1), needed to degrade 25-(OH)D3 and 1,25(OH)2D3, are present in the brain (Zehnder et 

al., 2001; Naveilhan et al., 1993).  The 1,25(OH)2D3 receptor (VDR) is expressed in both neurons 

and glial cells (microglia, astrocytes, oligodendrocytes, Schwann cells) in different regions of the 

nervous system (DeLuca et al., 2013). Neural stem cells constitutively express VDR, which can be 

upregulated by 1,25(OH)2D3 (Shirazi et al., 2015). Genomic 1,25(OH)2D3 effects require 

heterodimerization between VDR and retinoid X receptor. This complex binds to response 

elements (VDRE), thus regulating the transcription of genes (Christakos et al., 2016). It increases 

the transcription of the genes encoding growth factors, such as NGF,  glial derived neutrophic factor 

(GDNF), neurotrophin 3 (NT3), brain-derived neutrophic factor (BDNF) and ciliary neurotrophic 

factor (CNTF), and for enzymes involved in the synthesis of neurotransmitters (tyrosine 

hydroxylase, tryptophan hydroxylase 2, glutamate decarboxylase), whereas it represses that of 

voltage-dependent calcium channel (VDCC) (DeLuca et al., 2013; Patrick and Ames, 2015; Shirazi 

et al., 2015). VDR is also localized in the caveolae and induces non-genomic rapid effects (Fig  3). 

Activation of PKA, Ca2+/calmodulin-dependent PK, PI3K, and MAPK p38 results in 

phosphorylation of neurofilaments, and in modulation of chloride, potassium and voltage-dependent 

calcium channels in rat cortical neurons (Zanatta et al., 2012). In addition, other kinases including 

ERK1/ERK2, ERK5 and JNK1/JNK2 and PKC and other enzymes, such as PLA2,  Src and p21ras 

(Bi et al., 2016;  Hii and Ferrante, 2016) are also targets of 1,25(OH)2D3.   

The combination of in vitro, and in vivo experiments  provides compelling evidence that 

1,25(OH)2D3 has a crucial role in synaptic transmission and neuroplasticity (Smith et al., 2006; 

Groves et al., 2013; Eyles et al., 2013; Patrick and Ames, 2015; Latimer et al., 2014; Grecksch et 

al., 2012;  Taghizadeh et al., 2014 ) as well as in proliferation, differentiation, and neuroprotection 

as summerized in Table 2.  Increasing evidence derived from studies of 1,25(OH)2D3 deficiency and 

from VDR polymorphisms suggest that 1,25(OH)2D3 influences the susceptibility to a number of 

psychiatric and neurological diseases which include Alzheimer disease (AD), Parkinson disease 

(PD), schizophrenia, autism, depression, amyotrophic lateral sclerosis, epilepsy, and is especially 
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strong for multiple sclerosis (MS) (Eyles et al., 2013; Shen and Ji, 2015; Peterson et al., 2014; 

Spedding, 2014; Burton and Costello 2015). The effect of 1,25(OH)2D3 deficiency has been studied 

in female rats or mice fed with a 1,25(OH)2D3-deprived diet during pregnancy and the pups 

showed increased overall brain size and larger lateral ventricles that were not modified by the 

addition of 1,25(OH)2D3 to the diet after birth. In adult life, the rats demonstrated subtle alterations 

in learning and memory (Eyles et al., 2013; Fernandes de Abreu et al., 2010; Hawes et al., 2015). 

Interestingly, prenatal 1,25(OH)2D3-depleted rats exhibited the impairment of latent inhibition, 

mimicking some features found in schizophrenia (Grecksch et al., 2009). Offspring language 

impairment has been demonstrated in humans after maternal 1,25(OH)2D3 insufficiency during 

pregnancy (Whitehouse et al., 2012). The sumministration of 1,25(OH)2D3 exerts a neuroprotective 

effect in cognitive decline of aging rats (Latimer et al., 2014). The hormone prevents the beginning 

and reversibly blocks progression of pathological  manifestations of the experimental allergic 

encephalomyelitis, which is the animal model of MS.  This protective effect is absent in VDR 

knockout mice (DeLuca et al., 2013; Eyles et al., 2013). The effect of 1,25(OH)2D3 depends on its 

neuroimmunomodulatory properties (Eyles et al., 2013) and also on its action on neural cells. In 

fact, 1,25(OH)2D3 increases both neural stem cell proliferation and differentiation into neurons and 

oligodendrocytes, the myelinating cells of central nervous system (Shirazi et al., 2015; de la Fuente 

et al., 2015).  

Neurodegenerative diseases, including PD and AD show impairment in adult neurogenesis 

in hippocampal dentate gyrus and in the subventricular zone (Winner and Winkler, 2015). 

Therefore, the factors that promote neurogenesis are considered potential treatments for these 

disorders. The anti-proliferative and pro-differentiating effects of 1,25(OH)2D3 in neural cells were 

described more than 10 years ago (Brown et al., 2003; Ko et al., 2004) through the regulation of 

cyclin expression and NGF production in cultured  hippocampal cells (Brown et al., 2003; Ko et al., 

2004). Recently, CerK signalling pathway has been involved in the cell growth arrest promoted by 

1,25(OH)2D3 in human neuroblastoma cells (Bini et al., 2012).  In fact, the pharmacological 

inhibition and the silencing of CerK drastically reduced cell proliferation. 1,25(OH)2D3 and the 

VDR agonist ZK191784 induced a significant decrease in CerK expression and C1P content. The 

involvement of VDR/COUP-TFI/histone deacetylase complex in CerK regulation has also been 

reported in (Bini et al., 2012).   Accumulating data suggest  that 1,25(OH)2D3 has complex effects 

on neurogenesis of neural stem cells. Cui et al., (2007) have studied the effect of fetal 1,25(OH)2D3 

deprivation and they have observed the formation of an increased number of neurospheres in 

cultures from the neonatal subventricular zone. Exogenous 1,25(OH)2D3 added to the culture 

medium reduced neurosphere number in control, (in agreement with the presumed anti-proliferative 
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effect of 1,25(OH)2D3), but not in cultures from the hormone-deprived pups (Cui et al., 2007). In 

contrast, in vivo experiments have shown that fetal 1,25(OH)2D3) deficiency leads to reduced 

neurogenesis in the dentate gyrus of the hippocampus (Keilhoff et al., 2010). In another model of 

1,25(OH)2D3 deficiency, the 1α-hydroxylase knockout mice, 1,25(OH)2D3 increases proliferation, 

but decreases survival of newborn neurons in the dentate gyrus (Zhu et al., 2012). The different 

effects probably depend on the time window of exposition and/or the different sensibility to the 

hormone of distinct neurogenic niches. 
 
Crosstalk between SLs  and  1,25(OH)2D3 actions    

One or more components of the signal transduction pathway promoted by 1,25(OH)2D3 affects 

SLs  metabolism and viceversa (Fig. 4). For example, 1,25(OH)2D3 regulates the expression of S1P- 

phosphatase 2 (Reardon et al., 2013) and of CerK (Bini et al., 2012). Cholecalciferol, the non 

hydroxylated precursor of  1,25(OH)2D3 induces activation of SMase, increase of Cer and cell death 

in human glioblastoma cells (Magrassi et al., 1998). On the other hand,1,25(OH)2D3  increases the 

transcription of neurotrofic factors, such as NGF  and BDNF, which require SphK activity to 

execute the neuroprotective or prodifferentiating activity (Saini et al., 2005; Edsall et al., 1997; 

Culmsee et al., 2002; Murakami et al., 2007) or the modulation of excitability  (Zhang et al., 2008). 

Similarly, many protective or differentiating actions of 1,25(OH)2D3 in non neural cells are due to 

stimulation of  SMase, and of SphK and S1P generation (Okazaki et al., 1989; Kleuser et al., 1998; 

Manggau et al., 2001; Sauer et al., 2003).  

1,25(OH)2D3 is able to modulate S1PR expression: the hormone reduces the chemorepulsive 

S1P2R levels on circulating osteoblast precursors (Kikuta et al., 2013) and decreases S1P3R 

expression in human breast cancer cells (Dolezalova et al., 2003). Interestingly, VDR expression is 

correlated with calcitriol-mediated reduction of migration in glioblastoma multiforme (Salomón et 

al., 2014) but it is unknown whether this effect involves differential expression of S1P receptors. 

          SLs and 1,25(OH)2D3 have some common targets, including cathepsins. Cer and C1P directly 

interact and activate  cathepsin D (Heinrich et al., 2000; Zebrakovska et al., 2011) which is involved 

in cell death in many cell types. For example, gemcitabine activates aSMase, leading to lysosomal 

accumulation of Cer, cathepsin D activation and glioma cell death (Dumitru et al., 2009). Cathepsin 

D is able to migrate to the nucleus. Indeed, nuclear translocation of mitochondrial cytochrome c, 

lysosomal cathepsins B and D, and  other death-promoting proteins has been observed within the 

first 60 minutes of generalized seizures (Zhao et al., 2010).  Both cathepsin D and its inhibitor 

cystatin A have VRE in their promoters (Wang et al., 2005). This may explain, at least in part, the 

prosurvival and pro-death effects of 1,25(OH)2D3 in different cells.  
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Histone acetylation and methylation are often present at sites of VDR action and 

1,25(OH)2D3-induced binding of the VDR to these sites is associated with an increase in the level of 

histone modification as well as in changes in chromatin packaging (Carlberg and Campbell, 2013). . 

 Similarly, S1P formed inside the nuclei by SphK2 activation can inhibit HDACs and regulate gene 

transcription (Fig.2). Therefore, it could be possible that both 1,25(OH)2D3 and S1P epigenetically 

modulate the same genes (Huang et al., 2015; Hait et al., 2009).  

Furthermore, SLs are important components of lipid rich microdomains (LRM), also named 

lipid rafts, fluctuating nanoscale assemblies that can be stabilized to coalesce, forming platforms 

that function in membrane signaling and trafficking (Lingwood and Simons, 2010; Gulbins and 

Grassmé 2002). LRM have been described in the plasma membrane, mitochondria and nuclei. In 

the inner nuclear membrane LRM play a role in active chromatin anchoring, transcription factor 

binding and DNA duplication (Cascianelli et al., 2008; Albi et al., 2009, 2012, 2013; Cataldi et al., 

2014). VDR seems to be partly localized in nuclear LRM (Marini et al., 2010, Bartoccini et al., 

2011). Changes in SM levels and/or a shift in SM composition (from C24:0-SM to C16:0-SM) have 

been associated with a reduction of VDR content in nuclear LRM of tumour cells (Lazzarini et al., 

2015) and embryonic hippocampal cell differentiation (Bartoccini et al., 2011). Whether these 

alterations in nuclear LRM are involved in neurodegeneration is unknown. In the nervous system, 

LRM play a role in many processes, including neurotrophic factor signaling, cell adhesion and 

migration, axon guidance and myelin formation and stabilization (Aureli et al., 2015). Notably, 

recent evidence also suggests that LRM alterations  are implicated in neurodegenerative disorders 

including PD, AD, amyotrophic lateral sclerosis, Huntington’s disease, and prion diseases 

(Schengrund, 2010; Marin et al., 2016; Aureli et al., 2015).  

Recent data have uncovered that the crosstalk between S1P and 1,25(OH)2D3  also occurs in 

the extracellular fluids. It has been reported that patients with acute or chronic inflammation exhibit 

a low content of plasma gelsolin (pGSN) (Osborn et al., 2008; Lee et al., 2009). Gelsolin has two 

isoforms with similar structure and function:  the cytoplasmic actin-binding protein form, important 

for the regulation of cell shape and motility (cGSN), and pGSN, a multifunctional protein that acts 

as an extracellular actin scavenger system crucial for the removal of actin released from injured 

cells (Chauhan et al., 2008; Carro, 2010). Although the functions of pGSN and the mechanisms of 

its protective action are poorly known, it is clear that low levels of pGNS are indicator of poor 

prognosis or critical care complications. Notably, pGNS is able to bind to S1P in humans. This 

pGSN-S1P interaction in extracellular fluids may have several important consequences  by 

impairing either the ability of gelsolin to bind actin or that of S1P to bind to S1PR. In fact, pGSN-

S1P complex affects  the S1P-S1P1R module that regulates lymphocyte distribution and the 



11 
 

 11 

immunomodulatory balance at inflammatory sites (Bucki et al., 2010). It has been observed that 

patients suffering from lymphatic meningitis show low concentration of pGSN and a high 

concentration of S1P in the cerebrospinal fluid (CSF) samples (Bucki et al., 2010). Notably, another 

recent study has demonstrated that 1,25(OH)2D3 treatment can affect either S1P and pGNS. In fact, 

the hormone alleviates inflammation in experimental allergic encephalomyelitis, a model of MS, 

and this therapeutic effect might be derived from the ability of the hormone to reduce S1P (which is 

elevated in CSF and spinal cord of rats with experimental allergic encephalomyelitis). However, 

this effect might be limited by its simultaneous  action  in reducing pGSN and cGSN (Zhu et al., 

2014). 

All together, the accumulating evidences  suggest that 1,25(OH)2D3  and SLs can converge 

and share some targets: 1) the activation of similar pathways (through activation of protein kinases);  

2) the modulation of enzyme expression/activity (i.e, cathepsin); 3) the control of genes encoding 

for key enzymes of SLs metabolism and, likely, of S1PRs by 1,25(OH)2D3; 4) the modulation by 

S1P-dependent histone acetylation of VDR-dependent transcription. In addition, changes in SLs 

composition in LRM can also affect the localization and therefore the function of VDR. 

 

 

SLs / 1,25(OH)2D3 crosstalk: potential role in  neurogenerative diseases  

AD 

The actual most common form of dementia is AD, a neurodegenerative disorder of the CNS 

characterized by extracellular amyloid-containing plaques, intracellular neurofibrillary tangles 

consisting of hyperphosphorylated Tau protein and by the  death of cholinergic neurons of the basal 

forebrain.  Amyloid plaques are mainly formed by aggregated amyloid beta peptide (Aβ) generated 

by the hydrolysis of amyloid precursor protein (APP), first, by β-secretase 1 and, then, by γ-

secretase. The fibrils of the senile plaques are mainly formed by the self-assembled Aβ1–42 peptide 

that forms a heterogeneous mixture of oligomers and protofibrils. The small soluble Aβ1-

42 oligomers  are considered  to be the major neurotoxic species in AD and it has been 

hypothesized that cerebral accumulation of Aβ1-42 precedes and drives the deposition of the Tau 

protein in neuronal perikarya and their processes (Selkoe and Hardy, 2016). 

Alterations in the expression or in the activity of enzymes involved in SLs  metabolism have 

been found in the brain of AD patients (Table 2, Fig. 4 ).  They include SMases (Katsel et al., 2007; 

He et al., 2010),  CDase (Huang et al., 2004), S1P lyase and SphK (Ceccom et al., 2014), serine 

palmitoyl transferase, UDP-glucose Cer glucosyltransferase, CerS1,2,6 (Katsel et al., 2007; Couttas 
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et al., 2016). Changes in  SL content (Cer, S1P, SM, gangliosides and sulfatides) have also been 

reported  in animal models of AD (see ref. in Grimm et al., 2013) and in brain tissue and CSF of AD 

patients  (Han et al., 2002; Cutler et al. 2004; He et al., 2010; Couttas et al., 2014; Couttas et al., 

2016; Satoi et al., 2005, Mielke et al., 2010; Fonteh et al., 2016).  

In vitro experiments indicate that Aβ1-42 directly binds and activates  neutral SMase, 

decreasing  SM  content  (Grimm et al., 2005).  Aβ1-42  also activates aSMase through increased 

ROS accumulation via NADPH oxidase activation and reduced glutathion depletion (Jazvinšćak 

Jembrek et al., 2015). Cer generated by the degradation of SM due to the activation of SMase 

induces neuronal apoptosis (Jana and Pahan, 2004; Satoi et al., 2005; Malaplate-Armand et al., 

2006) or impairs autophagy (Yang et al., 2014). Cer  increases the stability,  while S1P increases the 

activity of  b-secretase 1 (Puglielli et al., 2003; Takasugi et al., 2011). On the other hand, SM 

decreases Aβ1-42  production by inhibiting the γ-secretase (Grimm et al., 2005). Therefore, some 

SLs might be protective by lowering Aβ levels (either by decreasing its  production or by increasing 

its clearance), while others might increase Aβ1-42 oligomerization and toxicity. Simultaneously, 

APP processing also leads to changes in lipid metabolism, resulting in complex regulatory feed-

back cycles, which appear to be dysregulated in AD (Grimm et al., 2013).  

Recently it has been demonstrated that exosome release in neural cells requires SMase 

activity  (Wang et al., 2012). The role of exosomes in AD is controversial.  One study shows that in 

vitro neuronal exosomes are able to capture Aβ and their infusion into brains of AD mice decreases 

Aβ and amyloid depositions (Yuyama et al., 2015).  More recently, it has been suggested that Cer-

enriched exosomes promote the aggregation of Aβ (Dinkins et al., 2016) since an AD mouse model 

lacking nSMase2, exhibits decrease of exosome release associated with reduction of plaque burden 

and improved cognition (Dinkins et al., 2016). 

Increasing evidence derived from epidemiological studies indicates that 1,25(OH)2D3 

deficiency and VDR polymorphisms influence susceptibility to AD (Gezen-Ak et al., 2012; 

Annweiler et al., 2014), whereas Aβ1-42  may disrupt the hormone-VDR pathway and cause 

defective utilization of 1,25(OH)2D3 by suppressing the level of the VDR, and by elevating the level 

of  24-hydroxylase, and, thereby, increasing the catabolism of the hormone (Dursun et al., 2011, 

2013a).  In addition to neuroprotective effects involving calcium homeostasis, decrease of ROS and 

inflammation, 1,25(OH)2D3 is able to exert other specific effects important for AD. For example, 

1,25(OH)2D3 may regulate the expression of many  genes associated with AD, and attenuate the 

build up of Ab deposits either by enhancing its clearance (transport to the blood or to the CSF) or 

by stimulating the phagocytosis of Ab. Likely, the hormone may alter APP processing and prevent 

the Ach defect by increasing the activity of choline acetyltransferase (thus Ach synthesis) in the 
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brain (Annweiler et al., 2014;  Briones and Darwish, 2012; Durk et al., 2014, Landel et al., 2016).   

Epigenetic modifications are involved in the regulation of many genes and aberrant 

epigenetic changes are associated with AD. For example, hyperacetylation of histone H4 at lysine 

12 in peripheral monocytes appears to be an early event in AD-pathology (Plagg et al., 2015). 

Recently, HDAC inhibitors have emerged as promising compounds to rescue cognitive deficits in a 

mouse model of AD (Kilgore et al., 2010). Therefore, upon treatment with 1,25(OH)2D3 or /and 

FTY7120, a possible effect on acetylation and  DNA methylation of AD-related genes (i.e. b-

secretase 1) could  result in beneficial effects against Ab-induced toxicity. 

Niemann-Pick type C (NPC)   

Niemann-Pick type C (NPC) disease is an autosomal recessive storage disorder due to mutations of 

two proteins NPC1 and NPC2 which mediate intracellular cholesterol trafficking in mammals. NPC 

is characterized by abnormal sequestration of unesterified cholesterol within the late endolysosomes 

and accumulation of Sph and gangliosides, formation of meganeurites and neurofibrillary tangles, 

neuroinflammation and axonal dystrophy. As the disease progresses, neuronal death of Purkinje 

cells of the cerebellum becomes prominent. AD and NPC share some molecular pathways, 

including abnormal cholesterol metabolism, and involvement of Aβ and Tau pathology (Malnar et 

al., 2014; Vanier et al., 2015). Miglustat is an inhibitor of  the enzyme GCS that converts Cer into 

glucosylCer  (Fig. 1), the first step in the synthesis of gangliosides. Miglustat has neuroprotective 

effects in NPC models (Table 2). It has been approved for the use in several gangliosidosis  and 

recently, for NPC (Patterson et al., 2015). Therefore, SLs appear to play a role in the pathogenesis 

of NPC. Indeed, it has been demonstrated that SM inhibits while Cer increases NPC2-mediated 

cholesterol transport (Abdul-Hammed et al., 2010). On the other hand, Lloyd-Evans et al., (2008) 

have proposed that Sph,  by altering calcium homeostasis, could play a role in the onset of NPC.  

 It is possible that 1,25(OH)2D3 and S1P could have some protective effect on NPC. It is 

already known that stem cells induce survival of cerebellar NPC1-/- cells (Lee et al., 2010)  by 

increasing S1P and, as discussed above, that  1,25(OH)2D3 is able to reduce Ab load in AD models.  

In addition, autophagy is dysregulated in NPC  and 1,25(OH)2D3  exerts some neuroprotective 

effects through the modulation of  autophagy (Li et al., 2015a). 

PD 

PD is a neurodegenerative disease characterized by loss of dopamine cells in the basal ganglia, and  

accumulation and/or aggregation of α-synuclein. Mutations in genes causing lysosomal storage 

disorders, such as those encoding GCDase A,  aSMase,  and NPC1 may increase the risk for 

developing PD (for a recent review see Migdalska-Richards and Schapira, 2016). Moreover, 

reduced GCDase activity (GBA1) has been found in patients with sporadic PD (Murphy et al., 
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2014; Table2). The concentration of glucosylCer and that of a-synuclein are inversely correlated. 

Total Cer and SM levels are reduced in anterior cingulate cortex of PD patients compared to 

controls (Abbot et al., 2014). A shift towards Cer containing short acyl chains and an upregulation 

of  Cer1S gene expression (which could be a compensatory effect to the reduction of Cer)  have also 

been reported (Abbot et al., 2014). S1P and 1,25(OH)2D3 have a neuroprotective effect in cellular 

models of PD (Shinpo et al.,2000; Smith et al., 2006; Pyszko and Strosznajder, 2014; see Table 3). 

1,25(OH)2D3 has shown neuroprotection also in different animal models of PD that have been 

correlated with increase in GDNF, increase in tyroxine hydroxylase expressing cells and decrease in 

inflammation (Smith et al., 2006; Wang et al., 2001, Kim et al., 2006).  1,25(OH)2D3  

supplementation was associated with significantly reduced risk of PD (Shen and Li, 2015a). The 

mechanism by which GCDase deficiency increases risk for developing PD is still unclear but it is 

known that GlucosylCer can stabilize α-synuclein oligomers (Mazulli et al., 2011) and that 

activation of GCDase reduces accumulation of α-synuclein and restores lysosomal function in vitro 

(Mazzulli et ala., 2016). Indeed, small increases in GlucosylCer or GlucosylSph have been reported 

primary cultured cortical neurons with GCDase knockdown (Mazulli et al., 2011), and  in 

dopaminergic neurons harboring heterozygote GCDase/GBA1 mutations (Schöndorf et al., 2014) 

and in the hippocampus of PD patients without GBA1 mutation (Rocha et al., 2015) (Table 2). 

Another possibility is that the changes in SL metabolism derived from GCDase deficiency impair 

autophagy, which has been suggested to contribute to a-synuclein accumulation in cellular and 

animal models of GCase deficiency (Mazzulli et al., 2011; Schöndorf et al., 2014).  

 

SLs, in particular S1P, and 1,25(OH)2D3 display their neuroprotective actions through 

common effectors such calcium regulation, synaptic modulation, growth factor expression, etc., but 

whether 1,25(OH)2D3 and SLs, could act synergistically on neuroprotection and/or neurogenesis in 

neurodegenerative diseases, such as AD, PD and NPC is still unknown and deserves further 

investigation. Preliminary results in our laboratory indicate that the crosstalk between  SLs and 

1,25(OH)2D3 leads to a specific balance between neurodegeneration/neuroprotection in neuronal 

cells. In particular, in human SH-SY5Y differentiated cells we found that 1,25(OH)2D3 treatment 

counteracts the downregulation of S1P1-mediated signalling promoted by Aβ1-42  (Pierucci et al., 

2016, submitted). 

 
Potential implications for  1,25(OH)2D3 and  FTY720 supplementation in AD  

 

Several observations in clinical trials have demonstrated that 1,25(OH)2D3 supplementation may 
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have protective effects in AD, however, in other studies no beneficial outcome has been reported 

(Landel et al., 2016, DeLuca et al., 2013) and evidence for a correlation between hypovitaminosis D 

and reduced neuroprotection against AD or AD progression is missing. Similarly, the ability of 

1,25(OH)2D3 supplementation to prevent other neurodegenerative diseases, such as MS, needs 

further investigation. On the other hand, some data suggest that the combination of 1,25(OH)2D3 

supplementation with the anti-neurodegenerative drug nemantidine could contrast the cognitive 

decline better than that with the single compound (Annweiler et al., 2014).    

On the contrary, the neuroprotective effect of S1P analogues in neurodegenerative diseases 

is well established. Fingolimod, the commercial name of FTY720, is an analogue of Sph which acts 

as an immunosuppressant and has been recently approved for the treatment of MS. Phosphorylation 

of FTY720 by SphK generates FTY720-phosphate, a molecule structurally similar to S1P that can 

bind to all the  S1P receptors, except S1P2. In lymph nodes, it acts as a highly potent functional 

antagonist of S1P1, leading to S1P1 receptor internalization in T cells that become unable to egress 

from the nodes. FTY720 also is active on different cells of the nervous system, including neurons, 

astrocytes, oligodendrocytes, microglia (Brunkhorst et al., 2014) and its protective function affects 

the process of myelination, the activation of microglia, proliferation and migration of precursor 

cells, neuronal differentiation and survival (Kawabori et al., 2013). In vivo, it has been shown that 

experimental allergic encephalomyelitis was attenuated by FTY720 supplementation, and no effect 

was observed in astrocytes that did not express S1P1. However, neurons lacking S1P1 were 

positively affected  by the compound (Choi et al., 2011).  In vitro, FTY720 decreases Aβ production 

in cultured neuronal cells (Takasugi et al., 2013). 

Regarding the therapeutical potentiality in AD, it has been reported that when FTY720 

supplementation was given to rats injected with Aβ1-42, there was a reduction in hippocampal and 

cortex cell death as well as an increase of memory compared with control rats (Asle-Rousta et al., 

2013; Hemmati et al., 2014). The in vivo beneficial effect on the nervous system is due to many 

factors including the increase in BDNF production which leads to increase in striatum size 

(Deogracias et al., 2012) and contributes to favour neuronal repair in diseases linked to a decrease 

of BDNF levels, such as Huntington diasease (Di Pardo et al., 2014; Miguez et al., 2015).  

Recently, it has been shown that FTY720 has also inhibitory effects on epigenetic 

modifications by reducing HDAC and regulating gene expression programs associated with 

memory and learning (Hait et al. 2014). All together these observations lead to speculate that 

1,25(OH)2D3 supplementation and FTY720 could act synergically in the prevention of 

neurodegenerative diseases. Preliminary studies in vivo  performed in our laboratory suggest the 

possibility of  a crossaction between the hormone and FTY720. In fact,  damage was reduced when 
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1,25(OH)2D3 supplementation  in mice injected with a submaximal dose of  Aβ1-42 was combined 

with FTY720 treatment. Further investigations are in progress (Meacci et al., personal 

communication).  

 

In conclusion, the potential for expanding the use of 1,25(OH)2D3 to neurodegenerative 

diseases is worth investigating. Additionally, the therapeutic potential of 1,25(OH)2D3 structural  

analogues  (see ref. in Leyssens et al., 2014 )  remains unexplored. In the long term, 1,25(OH)2D3 

and its analogues might provide valuable tools either for basic research in the dissection of the 

mechanisms of neuroprotection and for subsequent designer drug development. The combined 

treatments with 1,25(OH)2D3 and agonists/antagonists of S1P(1-5)R and the improvement of the 

characterization and quantification of Cer species, may offer significant advances in terms of 

understanding of, and ability to predict, the protein aggregation-induced toxicity in vivo.  
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Table 1. Role of SLs on proliferation, survival, differentiation, neurodegeneration, ischemia, 
and inflammation 
 
PROLIFERATION     
Cell/Tissue Method Effect Mechanism Reference 
Neural progenitor cultured 
cells 

A, 
exogenous 
S1P 

↑ proliferation  Harada et al., 
2004 

Oligodendrocyte precursors A,siS1P1R ↑ proliferation  S1P1R Jung et al., 
2007 

Neuronal progenitors retina A ↑ proliferation S1P Miranda et al., 
2009 
 

Human neuroblastoma cell A, siCerK ↓ proliferation  ↓ CerK 
expression 

Bini et al., 
2012 
 

Neuronal progenitors retina
  

A neuronal 
progenitors retina 

C1P Miranda et al., 
2011 
 

SURVIVAL     
     
Photoreceptor A ↑ survival C1P Miranda et al. 

2011 
 

SH-5YSY, TNFa, 
   

A,si CerK ↑ survival 
  

↓ CerK 
expression 

Barth et al., 
2012 
 

Photoreceptor  
  

A ↑  survival 
  

S1P Miranda et al., 
2009 

SH-SY5Y, MPP+ 
   

A ↑ survival 
  

S1P Pyszko  and 
Strosznajder, 
2014 

Mature oligodendrocyte
   
  

A,si S1P5R ↑ survival 
  

S1P5R/AKT Jaillard et al., 
2005 
 

Drosophila mutants 
  

B ↑  photoreceptor 
survival 
  
  

CDase 
expression 

Acharya et al., 
2003 

Retinitis pigmentosa mouse 
(eye)    

B ↑  photoreceptor 
survival 
  

SPT inhibition Strettoi et al., 
2010 
 

DIFFERENTIATION     
     
Neuronal progenitors retina
   

A ↑ differentiation
  

S1P Miranda et al., 
2009 

PC12   
   

A neurite retraction 
↓differentiation 

S1P/S1P2R Toman et  al., 
2004 

PC12, dorsal root ganglion 
neurons 

A ↑ differentiation 
↑neurite 

S1P/S1P1R Toman et  al., 
2004 
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outgrowth  
Oligodendrocyte precursor, 
S1P1R KO mouse 

B  ↓differentiation ↓S1P1R Dukala and 
Soliven, 2016
  

INFLAMMATION     
     
Microglial cultured cells, 
brain  

A,  
B 

↓inflammation C2-Cer  
ROS, MAPKs, 
PI3K/Akt, 
Jak/STAT 

Jung et al., 
2013 

Murineischemic brain 
Cultured neurons  
 

A,B,a ↑inflammation 
↓inflammation 
 

SphK1inhibition, 
KO 
SphK2 
inhibition, KO 
 

Zheng et al., 
2015 

NEURODEGENERATION     
     
Purkinje cell CerS1 mutants A ↓cell number 

↓ neurite 
branching 

↓C18Cer ,  
↑C16Cer 
↑Sph, ↑dhSph, 
↑dhS1P, ↑S1P   

Zhao et al., 
2011 

Purkinje cell, aSMase KO
  
 

A ↑ death  
   

↑SM Horinuchi et 
al., 1995
  

Neuroblastoma cell A,siCerS2 cell growth arrest 
increased 
autophagy 

↓CerS2, 
↑C16Cer, ↓ 
C24Cer, 

Spassieva et 
al., 2009 

ISCHEMIA/HYPOXIA     
     
Rat brain,glia, chronic hypoxia B  ↑ Cer, ↑ aSMase, 

↓GCS   
Ohtani et al., 
2004 

Hypoxia/reoxygenation   
NT-2 neuronal precursor 
cells  

A  ↑ C14Cer, ↑C16 
Cer , ↑ SMase, 
↑CerS5 
  

Jin et al., 2008 

Ischemia, rat hippocampus 
astrocyte  
   

B ↑TNFa, IL1, IL6 ↑ nSMase  Gu et al., 2013 
 

 
The table illustrates some examples of the involvement of SLs on proliferation and survival, 
indicating the experimental method used (A, in vitro; B, in vivo; MPP+, 1-methyl-4-
phenylpyridinium;  si: siRNA; ↑, increase; ↓, decrease).   
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Table 2. Involvement of SLs on neurodegenerative diseases 
 
 Method Effect Mechanism Reference 
AD     
Cortical neurons, Ab 1-42
    
 

A ↑exosome 
release, 
↑apoptosis 

↑nSMase, Wang et al., 
2012 

Human primary neurons, 
Ab    

A ↑ apoptosis ↑ nSMase Jana and Pahan, 
2004 

Cultured hippocampal 
neurons,  Ab  
   
 

B ↑apoptosis ↑ C18Cer, C24Cer 
   

Cutler et al., 
2004 

Presenilin  knock-in mouse, 
primary cultured  
astrocytes  

A ↑cell death ↑ C20Cer, C24Cer, 
↑CerS1, ↑CerS4 

Wang et al., 
2008 
 

Astrocytes, frontal 
cortex, cerebrospinal fluid, 
 patients   

B  ↑Cer  Satoi et al., 
2005 

White matter temporal 
cortex,  
white and gray matter, 
patients  
  

B  ↑ C24:1Cer  
↓sulfatides 

Han et al., 2002 

Medial frontal gyrus, 
patients  
  

B  ↑ C24:0 Cer 
   

Cutler et al., 
2004 

Cultured neurons, Ab 
 
Brain, patients 

A 
 
B 

↑Apoptosis ↑a,nSMase, ↑acid 
CDase 
↑aSMase, ↑acid 
CDase, ↑Cer,  ↓SM 
 

He et al., 2010 

Entorhinal cortex,patients
  
Hippocampus 
temporal gray matter  
    

B 
 
 

amyloid 
deposit  

↓SphK1 , ↓S1P1R, 
↑SPL  
↓S1P, ↓SphK1,2 
↑C16:0 Cer 

Ceccom et al., 
2014 

Brodman areas 46,10,20 
patients, 

B  ↑ PPAP2B, ↑ SPL, 
↓acid CDase, 
↑CerS1,2, ↓CerS6 
 

Katsel et al., 
2007 

PD     
Anterior cingulate cortex , 
patients  
  

B  ↓total Cer, ↓SM
 , 
↑CerS1 expression 

Abbot et al., 
2014 
 

Anterior cingulate cortex , 
patients  

B ↑ autophagy 
↑a-synuclein 

↓GlucosylCDase, 
↓Cer,   

Murphy et al., 
2014 

MS     
White matter, patients 
 

B   ↓S1P, ↑Sph, 
↑C16Cer, ↑C18Cer

Qin et al., 2010 
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Reactive astrocytes, patients
    

B  ↑ C18:0 Cer Kim et al., 2012 

NPC     
NPC-/- mouse brain  B  ↑GlucosylCer, 

GalactosylCer, 
GlucosylSph, 
GM2, GM3 

Marques et al., 
2015 

NPC-/- mouse brain with 
GBA2 deletion,  

B improved 
motor 
coordination  

↑Glucosyl Cer, 
GlucosylSph 
= cholesterol 
= gangliosides 

Marques et al., 
2015 

NPC1-/- mouse brain, 
Miglustat  
  
Patients, plasma 
 
 
Patients +  Miglustat, 
plasma 
patients + Miglustat, CSF 

B  
 
 
 

 GCS inhibition , 
↑ monohexylCer 
 
↑ monohexylCer 
↑C16:0Cer, ↓Sph, 
↑S1P 
↓Cer, ↓GM1, 
↓GM3 
↑monohexylCer
   

Fan et al., 2013 

NPC1-/- mouse brain,  
Miglustat,  

B ↑synaptic 
plasticity 

GCS inhibition D’Arcangelo et 
al., 2016 
 

Purkinje neurons from 
NPC1-/- cat, Miglustat
   

A/B ↑survival GCS inhibition Stein et al., 
2012 

NPC1-/- cat, Miglustat
  

B ↑lifespan 
↓ motor deficit
  

GCS inhibition 
 

Stein et al., 
2012 

Lymphocytes NPC patients, 
Miglustat 

A correction of 
abnormal lipid 
trafficking 

GCS inhibition 
 

Lachmann et 
al., 2004 

 
The table illustrates some examples of the involvement of SLs on neuroinflammation, ischemia, and 
in neurogenerative diseases such as PD, MS, AD and NPC, indicating the experimental method 
used (A: in vitro; B, in vivo; si: siRNA; GBA2, non-lysosomal glucosylCDase ).  The alterations in 
SLs content or in expression/activity of enzymes involved in SL metabolism are listed under 
Mechanism. 
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Table 3. Effects of 1,25(OH)2D3 on nervous system differentiation, protection and proliferation 
 
DIFFERENTIATION  
 
Cell     Effect    Mechanism   References 
Primary embryonic hippocampal   
 cells     ↑ neurite outgrowth  ↑NGF  Brown et al., 2003 
OPC     ↑ differentiation  ↑MBP  de la Fuente et al., 2015 
Neuronal stem cell    ↑ differentiation  to 

 oligodendrocytes   ↑ CNTF  Shrirazi et al., 2015 
    

Schwann cells    ↑ differentiation  ↑ IGF-1  Hao et al., 2015 
HN9.10e     ↑ neurite outgrowth  ↑ NGF, Bcl-2 Marini et al., 2010 
 
 
PROTECTION 
 
Animal/Cell  Stimulus  Mechanism    References 
Murine experimental  
allergic encephalomyelitis MBP   nd    Lemire & Archer, 1991 
Dopaminergic cell MPTP+, sulfoximine ↓ROS, ↑glutathion  Shinpo et al., 2001 
Mesencephalic cell 6OH-DA,  ↑TH, ↑arborization  Wang et al., 2001 
Hippocampal neuron NMDA, glutamate ↓LVSCC   Brewer et al., 2001 
Substantia nigra  Zn   ↓lipid peroxidation,  Lin et al., 2003 
      ↑ DA 
Cortex   ischemia  ↑HO-1, ↓ GFAP   Oermann et al., 2004 
Cortical neuron  glutamate  ↑MAP2, ↑GAP-43,  Taniura et al., 2006 
      ↑synapsin 1, ↑VDR 
Rat, substantia nigra  6OH-DA  ↑DA    Smith et al., 2006 
rat, mice   MPTP   ↓  microglia activation,  Kim et al., 2006 

↓TNFα  mRNA, ↓INFγ mRNA 
cortical cells  cyanide   ↓ uncoupling, ↑Ikkb  Li et al., 2008 
hippocampus  glutamate, ischemia ↓ caspase-3   Kajta et al., 2009 
mesencephalic neuron    ↑GDNF    Orme et al., 2013 
rat hippocampus  ischemia/reperfusion NR3A, ERK, pCREB  Fu et al., 2013 
SH-SY5Y   Rotenone   ↑ autophagy   Jang et al., 2014 

↑LC3, beclin, AMPK  
Neuron-glia   endotoxin  ↓ MAPK, ↓iNOS,  Huang et al., 2015 
      ↓IL-6, ↓MIP-2 mRNA 
mouse   MPTP   ↑ autophagy   Li et al., 2015 
Cortex slices  hyperhomocysteinemia ↓ ROS, ↓ iNOS   Longoni et al. 2016 
Schwann  High glucose  ↑ CBS, ↑H2S, ↓ ROS  Zhang et al. 2016 
   Methylglyoxal 
Tg2576 and  
TgCRND8 mice     ↓plaque formation,  Durk et al., 2014 
      ↓ lower soluble Aβ levels, 
      ↑ P-glycoprotein 
AD mouse (AbPP)    ↓decrease memory deficit  Yu et al., 2011 
      ↓plaque formation, ↑NGF 
      ↓ inflammation 
Aging rats     ↓decrease memory deficit   Latimer et al., 2016 
 

Modulation proinflammatory  Briones and Darwish, 
cytokines   2012 
↓decrease amyloid   
↓decrease amyloid  Yu et al., 2011 

 
Hippocampal  neurons  and  Ab  ↓cytotoxicity ↓iNOS  Dursun et al., 2011; 
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cortical neurons     ↓ LV CDCC A1C , ↑VDR  2013a,b 
Mouse retina     ↑ phagocytosis, ↓ Ab  Lee et al. 2012 
AD macrophages     Modulation IL1, IL1R  Mizwicki et al. 2012,2013 
      ↑ phagocytosis, ↓ Ab 
bEnd.3 cells     ↑Aβ1-40 brain-to-blood efflux  

of amyloid-β (Aβ) peptide  Guo et al., 2016 
LRP1 and RAGE regulation  

 
 
PROLIFERATION 
 
Cell/animal  Action   Mechanism    References 
 
Neuroblastoma cells  ↓   CerK               Bini et al., 2012 
             
      nd    Gummireddy et al., 2003a,b 
           Celli et al., 1999a,b 

Stio et  al., 2001 
Stem cells  ↑   ↑NT-3, BDNF, GDNF and CNTF Shirazi et al., 2015 
          
Primary embryonic ↓       Brown et al., 2003 
hippocampal cells 
1,25(OH)2D3 -deprived  
embryos E19, brain ↑   ↑cyclin D   Ko et al., 2004 
      ↓ cyclin B, ↓p21 
Glioblastoma cells ↑, no effect      Diesel et al., 2005 
1,25(OH)2D3-deprived ↓       Cui et al., 2007 
neuroprogenitors, SVZ 
1a-hydroxylase knockout ↑       Zhu et al., 2012 
Mouse, dentate gyrus  

    
The table illustrates the effect of 1,25(OH)2D3  in cell types and the mechanism involved. The 

noxius agent  is listed under Stimulus. ↑, increase; ↓, decrease.  Abbreviations: 6-OHDA: 6-

hydroxydopamine; AMPK: AMP-dependent PK; BDNF: brain derived neurotrophic factor; GDNF: 

glial derived neurotrophic factor; CNTF: ciliary derived neurotrophic factor;  bEnd.3: mouse brain 

microvascular endothelial cell line; CBS: cystathionine-β-synthase; DRG: dorsal root ganglion; 

HO: hemoxygenase; i NOS: inducible nitric oxide synthase; LVDCC: L-type voltage-sensitive 

calcium channels; LRP1: low-density lipoprotein receptor-related protein 1; MBP : myelin basic 

protein;  MPTP : 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine ; nd: not determined; NR3A: N-

Methyl-D-Aspartate receptor subunit 3A; OPC: oligodendrocyte precursor cell; RAGE: receptor for 

advanced glycation end products, SVZ, subventricular zone.   
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 Figure legends   

Figure 1. Metabolism of sphingolipids. A). de novo synthesis of sphingolipids leads to the  

formation of ceramide (Cer)  and sphingosine 1-phosphate (S1P) through  four reactions catalized 

by the serine palmitoyltransferase (SPT), which condenses palmitoyl-CoA and serine into 3-

ketosphinganine (3-KS), the 3-ketosphinganine reductase (3-KR), which generates sphinganine 

(DHSph), the (dihydro) Cer synthase (CerS), which acylates sphinganine to dihydroceramide 

(DHCer), and the dihydroceramide desaturase (DES), which converts relatively inactive 

dihydroceramide to ceramide). The latter is converted to sphingosine  (Sph) by ceramidase (CDase). 

Sph can be converted to S1P by sphingosine kinase (SphK) or to Cer by CerS.  The degradation of 

S1P is achieved by the reversible reaction catalized by the S1P phosphatase (S1PPase) and the 

irreversible reaction catalized by S1P lyase which produces  hexadecenal and ethanolamine 

phosphate. B). The cell membrane constituent sphingomyelinase (SMase/SMPD) generates Cer 

from   sphingomyelin (SM). Phosphorylation of Cer by Cer kinase (CerK) generates ceramide-1- 

phosphate (C1P). In the Golgi, Cer is  converted to SM by SM synthase, or to GlucosylCer by 

glucosylceramide synthase. GlcCer is then processed to more complex glycosphingolipids (not 

shown). Glucosylceramidase (also named glucosylcerebrosidase) (GCDase) produces Cer from 

glucosylCer. 

B. S1P can be exported outside the cells by ABC transporters and the putative transporter Spinster 2 

(spns2) and elicits autocrine or paracrine signaling by binding to and activating G-protein-coupled 

receptors (S1PR1-5).  G-proteins are composed of three subunits: alpha, beta, and gamma and are 

classified as G(q), G(i/o), G(12/13) and G(s) depending on the function of their alpha subunits.  

 

 

 

Figure 2.  Biological function of S1P/S1P receptor signaling.  

Phosphorylation activates SphK1  and promotes its translocation to the membrane (dashed arrow), 

where S1P is generated. The bioactive lipid can be released and then bind to S1PRs. Activation of 

each receptor subtype leads to distinct G-protein mediated signaling pathways. S1P can be also 

formed by SphK isoform 2 inside the nucleus and in this compartment it can inhibit p21 

transcription and histone deacetylase activity (DHAC). ↑: activation; ┬ :inhibition 
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Figure 3. Biological function of 1,25(OH)2D3/ VDR signaling.  

Non-genomic rapid actions of 1,25(OH)2D3 are mediated by membrane vitamin D3 receptor  

(mVDR), localized at plasma membrane. Inactive form of VDR is present in the cytosol (VDR).  

mVDR activation through MARRS (membrane-associated, rapid response steroid-binding protein) 

promotes MAPK cascade, Raf kinase with the consequent activation of PKC, PI3K, and PKA. 

1,25(OH)2D3 can interact with TGF and EGF receptors to modulate cell cycle processes. Activation 

of  the G-protein coupled receptor S1P1R leads to specific Raf-MAPK-ERK cascade that may 

cross-talk with the classical VDR pathways.  

1,25(OH)2D3 genomic action leads to gene expression regulation following the  nuclear 

translocation of VDR, the formation of the complex of VDR and  9-cis-retinoic acid receptor 

(VDR/RXR),  and its binding to the vitamin D3 response elements (VDREs).  

 

Figure 4. Effect  of 1,25(OH)2D3  and Ab on the key reactions involved in the sphingolipid 

metabolic pathway. 

The effect of 1,25(OH)2D3 is shown in blue and dashed lines, whereas the effect of  Ab treatment or 

alterations associated with AD on the key enzymes involved in the reactions are shown in red and 

continuous line. ↑: activation or increased expression/activity; ┬ : inhibition or reduced 

expression/activity 
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