17,155 research outputs found

    Chebyshev Polynomial Approximation for Distributed Signal Processing

    Get PDF
    Unions of graph Fourier multipliers are an important class of linear operators for processing signals defined on graphs. We present a novel method to efficiently distribute the application of these operators to the high-dimensional signals collected by sensor networks. The proposed method features approximations of the graph Fourier multipliers by shifted Chebyshev polynomials, whose recurrence relations make them readily amenable to distributed computation. We demonstrate how the proposed method can be used in a distributed denoising task, and show that the communication requirements of the method scale gracefully with the size of the network.Comment: 8 pages, 5 figures, to appear in the Proceedings of the IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), June, 2011, Barcelona, Spai

    International R&D Spillovers Between U.S. and Japanese R&D Intensive Sectors

    Get PDF
    A great deal of empirical evidence shows that a country's production structure and productivity growth depend on its own R&D capital formation. With the growing role of international trade, foreign investment and international knowledge diffusion, domestic production and productivity also depend on the R&D activities of other countries. The purpose of this paper is to empirically investigate the bilateral link between the U.S. and Japanese economies in terms of how R&D capital formation in one country affects the production structure, physical and R&D capital accumulation, and productivity growth in the other country. We find that production processes become less labor intensive as international R&D spillovers grow. In the short-run, R&D intensity is complementary to the international spillover. This relationship persists in the long-run for the U.S., but the Japanese decrease their own R&D intensity. U.S. R&D capital accounts for 60% of Japanese total factor productivity growth, while Japanese R&D capital contributes 20% to U.S. productivity gains. International spillovers cause social rates of return to be about four times the private returns.

    A Multiscale Pyramid Transform for Graph Signals

    Get PDF
    Multiscale transforms designed to process analog and discrete-time signals and images cannot be directly applied to analyze high-dimensional data residing on the vertices of a weighted graph, as they do not capture the intrinsic geometric structure of the underlying graph data domain. In this paper, we adapt the Laplacian pyramid transform for signals on Euclidean domains so that it can be used to analyze high-dimensional data residing on the vertices of a weighted graph. Our approach is to study existing methods and develop new methods for the four fundamental operations of graph downsampling, graph reduction, and filtering and interpolation of signals on graphs. Equipped with appropriate notions of these operations, we leverage the basic multiscale constructs and intuitions from classical signal processing to generate a transform that yields both a multiresolution of graphs and an associated multiresolution of a graph signal on the underlying sequence of graphs.Comment: 16 pages, 13 figure

    Spectrum-Adapted Tight Graph Wavelet and Vertex-Frequency Frames

    Full text link
    We consider the problem of designing spectral graph filters for the construction of dictionaries of atoms that can be used to efficiently represent signals residing on weighted graphs. While the filters used in previous spectral graph wavelet constructions are only adapted to the length of the spectrum, the filters proposed in this paper are adapted to the distribution of graph Laplacian eigenvalues, and therefore lead to atoms with better discriminatory power. Our approach is to first characterize a family of systems of uniformly translated kernels in the graph spectral domain that give rise to tight frames of atoms generated via generalized translation on the graph. We then warp the uniform translates with a function that approximates the cumulative spectral density function of the graph Laplacian eigenvalues. We use this approach to construct computationally efficient, spectrum-adapted, tight vertex-frequency and graph wavelet frames. We give numerous examples of the resulting spectrum-adapted graph filters, and also present an illustrative example of vertex-frequency analysis using the proposed construction

    Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 2: Bi-directional sliding

    Get PDF
    As-plated and heat-treated electrodeposited NiP and composite NiP-SiC coatings were investigated in bi-directional ball-on-disc sliding tests. All tests were performed under gross slip conditions. Heat treatment decreases the wear volume loss during fretting in ambient air for all coatings investigated. Heat-treated NiP coating has a lower wear volume loss compared to composite NiP-SiC coatings for all sliding tests. The wear rate at the bi-directional sliding test was found to be lower relative to the wear rate at uni-directional sliding test

    Effect of reinforcing submicron SiC particles on the wear of electrolytic NiP coatings Part 1. Uni-directional sliding

    Get PDF
    As-plated and annealed NiP coatings and composite NiP-SiC coatings were investigated in uni-directional ball-on-disc sliding tests. Abrasive wear was noticed in the case of composite NiP coatings containing submicron SiC particles, whereas in NiP coatings oxidational wear was active. The addition of submicron SiC particles not only increases the hardness of these electrolytic coatings but also hinders the formation of an oxide film in the sliding wear track. As a consequence, the wear loss on as-plated NiP coatings is not markedly reduced by the addition of SiC particles. On the contrary, a heat treatment at 420 °C for 1 h decreases the wear loss on both pure NiP and composite NiP-SiC coatings. During that heat treatment, Ni3P precipitates are formed in the NiP matrix and owing to this fact, the hardness of both pure NiP and composite NiP-SiC coatings increases. However, the heat treatment of composite NiP-SiC coatings induces the sensitivity for crack formation in the NiP matrix around these SiC particles. As a result, the pull out of SiC particles in the wear track occurs easily during sliding, and the wear loss of composite NiP-SiC coatings remains above the wear loss on NiP coatings

    Momentum distribution and coherence of a weakly interacting Bose gas after a quench

    Full text link
    We consider a weakly interacting uniform atomic Bose gas with a time-dependent nonlinear coupling constant. By developing a suitable Bogoliubov treatment we investigate the time evolution of several observables, including the momentum distribution, the degree of coherence in the system, and their dependence on dimensionality and temperature. We rigorously prove that the low-momentum Bogoliubov modes remain frozen during the whole evolution, while the high-momentum ones adiabatically follow the change in time of the interaction strength. At intermediate momenta we point out the occurrence of oscillations, which are analogous to Sakharov oscillations. We identify two wide classes of time-dependent behaviors of the coupling for which an exact solution of the problem can be found, allowing for an analytic computation of all the relevant observables. A special emphasis is put on the study of the coherence property of the system in one spatial dimension. We show that the system exhibits a smooth "light-cone effect," with typically no prethermalization.Comment: 24 pages, 12 figure
    • …
    corecore