
Chebyshev Polynomial Approximation for
Distributed Signal Processing

David I Shuman, Pierre Vandergheynst, and Pascal Frossard
Ecole Polytechnique Fédérale de Lausanne (EPFL)

Signal Processing Laboratory
CH-1015 Lausanne, Switzerland

{david.shuman, pierre.vandergheynst, pascal.frossard}@epfl.ch

Abstract—Unions of graph Fourier multipliers are an impor-
tant class of linear operators for processing signals defined on
graphs. We present a novel method to efficiently distribute the
application of these operators to the high-dimensional signals
collected by sensor networks. The proposed method features
approximations of the graph Fourier multipliers by shifted
Chebyshev polynomials, whose recurrence relations make them
readily amenable to distributed computation. We demonstrate
how the proposed method can be used in a distributed denoising
task, and show that the communication requirements of the
method scale gracefully with the size of the network.

Index Terms—Chebyshev polynomial approximation, denois-
ing, distributed optimization, regularization, signal processing on
graphs, spectral graph theory, wireless sensor networks

I. INTRODUCTION

Wireless sensor networks are now prevalent in applications
such as environmental monitoring, target tracking, surveil-
lance, medical diagnostics, and manufacturing process flow.
The sensor nodes are often deployed en masse to collectively
achieve tasks such as estimation, detection, classification, and
localization. While such networks have the ability to collect
large amounts of data in a short time, they also face a number
of resource constraints. First, they are energy constrained,
as they are often expected to operate for long periods of
time without human intervention, despite being powered by
batteries or energy harvesting. Second, they may have limited
communication range and capacity due to the need to save
energy. Third, they may have limited on-board processing
capabilities. Therefore, it is critical to develop distributed
algorithms for in-network data processing that help balance the
trade-offs between performance, communication bandwidth,
and computational complexity.

Due to the limited communication range of wireless sensor
nodes, each sensor node in a large network is likely to
communicate with only a small number of other nodes in
the network. To model the communication patterns, we can
write down a graph with each vertex corresponding to a sensor
node and each edge corresponding to a pair of nodes that
communicate. Moreover, because the communication graph is
a function of the distances between nodes, it often captures
spatial correlations between sensors’ observations as well.

This work was supported in part by FET-Open grant number 255931
UNLocX. The authors would also like to thank Javier Pérez-Trufero for his
help producing some of the graphics in this paper.

That is, if two sensors are close enough to communicate,
their observations are more likely to be correlated. We can
further specify these spatial correlations by adding weights
to the edges of the graph, with higher weights associated to
edges connecting sensors with closely correlated observations.
For example, it is common to construct the graph with a
thresholded Gaussian kernel weighting function based on the
physical distance between nodes, where the weight of edge e
connecting nodes i and j that are a distance d(i, j) apart is

w(e) =

{
exp

(
− [d(i,j)]2

2σ2

)
if d(i, j) ≤ κ

0 otherwise
, (1)

for some parameters σ and κ.
In this paper, we consider signals collected by a sensor

network whose nodes can only send messages to their local
neighbors (i.e., they cannot communicate directly with a
central entity). While much of the literature on distributed
signal processing (see, e.g., [1]-[4] and references therein)
focuses on coming to an agreement on simple features of the
observed signal (e.g., consensus averaging, parameter estima-
tion), we are more interested in processing the full function in
a distributed manner, with each node having its own objective.
Some example tasks under this umbrella include:
• Distributed denoising – In a sensor network of N sensors,

a noisy N -dimensional signal is observed, with each
component of the signal corresponding to the observation
at one sensor location. Using the prior knowledge that the
denoised signal should be smooth or piecewise smooth
with respect to the underlying weighted graph structure,
the sensors’ task is to denoise each of their components
of the signal by iteratively passing messages to their local
neighbors and performing computations.

• Distributed semi-supervised learning / binary classifica-
tion – A binary label (-1 or 1) is associated with each
sensor node; however, only a small number of nodes
in the network have knowledge of their labels. The
cooperative task is for each node to learn its label by
iteratively passing messages to its local neighbors and
performing computations.

These and similar tasks have been considered in centralized
settings in the relatively young field of signal processing on
graphs. For example, [5]-[7] consider general regularization

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147971604?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

frameworks on weighted graphs; [8]-[10] present graph-based
semi-supervised learning methods; and [11]-[14] consider reg-
ularization and filtering on weighted graphs for image and
mesh processing. In distributed settings, [15] considers denois-
ing via wavelet processing and [16] presents a denoising algo-
rithm that projects the measured signal onto a low-dimensional
subspace spanned by smooth functions. References [17]-[19]
consider different distributed regression problems.

Our main contributions in this paper are i) to show that a key
component of many distributed signal processing tasks is the
application of linear operators that are unions of graph Fourier
multipliers; and ii) to present a novel method to efficiently dis-
tribute the application of the graph Fourier multiplier operators
to the high-dimensional signals collected by sensor networks.

To elaborate a bit, graph Fourier multiplier operators are
the graph analog of filter banks, one of the most commonly
used tools in digital signal processing. Multiplying a signal
on the graph by one of these matrices is analogous to
reshaping the signal’s frequencies by multiplying it by a
filter in the Fourier domain in classical signal processing.
The crux of our novel distributed computational method is
to approximate each graph Fourier multiplier by a truncated
Chebyshev polynomial expansion. In a centralized setting, [20]
shows that the truncated Chebyshev polynomial expansion
efficiently approximates the application of a spectral graph
wavelet transform, which is a specific example of a union
of graph Fourier multipliers. In this paper, we extend the
Chebyshev polynomial approximation method to the general
class of unions of graph Fourier multiplier operators, and show
how the recurrence properties of the Chebyshev polynomials
also enable distributed application of these operators. The
communication requirements for distributed computation using
this method scale gracefully with the number of sensors in the
network (and, accordingly, the size of the signals).

The remainder of the paper is as follows. In the next section,
we provide some background from spectral graph theory. In
Section III, we introduce graph Fourier multiplier operators
and show how they can be efficiently approximated with
shifted Chebyshev polynomials in a centralized setting. We
then discuss the distributed computation of quantities involving
these operators in Section IV, and provide some application
examples in Section V. Section VI concludes the paper.

II. SPECTRAL GRAPH THEORY

Before proceeding, we introduce some basic notations and
definitions from spectral graph theory [21]. We model the
sensor network with an undirected, weighted graph G =
{E, V,w}, which consists of a set of vertices V , a set of
edges E, and a weight function w : E → R+ that assigns
a non-negative weight to each edge. We assume the number
of sensors in the network, N = |V |, is finite, and the graph is
connected. The adjacency (or weight) matrix A for a weighted
graph G is the N ×N matrix with entries Am,n, where

Am,n =

{
w(e), if e ∈ E connects vertices m and n
0, otherwise

.

The degree of each vertex is the sum of the weights of all the
edges incident to it. We define the degree matrix D to have
diagonal elements equal to the degrees, and zeros elsewhere.
The non-normalized graph Laplacian is defined as L := D−A.
For any f ∈ RN on the vertices of the graph, L satisfies

(Lf)(m) =
∑
m∼n

Am,n · [f(m)− f(n)],

where m ∼ n indicates vertices m and n are connected.
As the graph Laplacian L is a real symmetric matrix, it has

a complete set of orthonormal eigenvectors. We denote these
by χ` for ` = 0, . . . , N−1, with associated real, non-negative
eigenvalues λ` satisfying Lχ` = λ`χ`. Zero appears as an
eigenvalue with multiplicity equal to the number of connected
components of the graph [21]. Without loss of generality, we
assume the eigenvalues of the Laplacian of the connected
graph G to be ordered as

0 = λ0 < λ1 ≤ λ2... ≤ λN−1 := λmax.

Just as the classical Fourier transform is the expansion of
a function f in terms of the eigenfunctions of the Laplace
operator

f̂(ω) = 〈eiωx, f〉 =
∫
R

f(x)e−iωx dx,

the graph Fourier transform f̂ of any function f ∈ RN
on the vertices of G is the expansion of f in terms of the
eigenfunctions of the graph Laplacian. It is defined by

f̂(`) := 〈χ`, f〉 =
N∑
n=1

χ∗` (n)f(n), (2)

where we adopt the convention that the inner product be
conjugate-linear in the first argument. The inverse graph
Fourier transform is given by

f(n) =
N−1∑
`=0

f̂(`)χ`(n). (3)

III. CHEBYSHEV POLYNOMIAL APPROXIMATION OF
GRAPH FOURIER MULTIPLIERS

In this section, we introduce graph Fourier multiplier opera-
tors, unions of graph Fourier multiplier operators, and a com-
putationally efficient approximation to unions of graph Fourier
multiplier operators based on shifted Chebyshev polynomials.
All methods discussed here are for a centralized setting, and
we extend them to a distributed setting in Section IV.

A. Graph Fourier Multiplier Operators

For a function f defined on the real line, a Fourier multi-
plier operator or filter Ψ reshapes the function’s frequencies
through multiplication in the Fourier domain:

Ψ̂f(ω) = g(ω)f̂(ω), for every frequency ω.

Equivalently, denoting the Fourier and inverse Fourier trans-
forms by F and F−1, we have

Ψf(x) = F−1
(
g(ω)F(f)(ω)

)
(x) (4)

=
1

2π

∫
R

g(ω)f̂(ω)eiωx dω.

We can extend this straightforwardly to functions defined on
the vertices of a graph (and in fact to any group with a Fourier
transform) by replacing the Fourier transform and its inverse
in (4) with the graph Fourier transform and its inverse, defined
in (2) and (3). Namely, a graph Fourier multiplier operator is
a linear operator Ψ : RN → RN that can be written as

Ψf(n) = F−1
(
g(λ`)F(f)(`)

)
(n)

=
N−1∑
`=0

g(λ`)f̂(`)χ`(n). (5)

We refer to g(·) as the multiplier. A high-level intuition behind
(5) is as follows. The eigenvectors corresponding to the lowest
eigenvalues of the graph Laplacian are the “smoothest” in the
sense that |χ`(m)− χ`(n)| is small for neighboring vertices
m and n. At the extreme is χ0, which is a constant vector
(χ0(m) = χ0(n) for all m and n). The inverse graph Fourier
transform (3) provides a representation of a signal f as a
superposition of the orthonormal set of eigenvectors of the
graph Laplacian. The effect of the graph Fourier multiplier
operator Ψ is to modify the contribution of each eigenvector.
For example, applying a multiplier g(·) that is 1 for all λ`
below some threshold, and 0 for all λ` above the threshold is
equivalent to projecting the signal onto the eigenvectors of the
graph Laplacian associated with the lowest eigenvalues. This
is analogous to low-pass filtering in the continuous domain.
Section V contains further intuition about and examples of
graph Fourier multiplier operators. For more properties of the
graph Laplacian eigenvectors, see [22].

B. Unions of Graph Fourier Multiplier Operators

In order for our distributed computation method of the next
section to be applicable to a wider range of applications,
we can generalize slightly from graph Fourier multipliers
to unions of graph Fourier multiplier operators. A union
of graph Fourier multiplier operators is a linear operator
Φ : RN → RηN (η ∈ {1, 2, . . .}) whose application to a
function f ∈ RN can be written as (see also Figure 1)

Φf = [Ψ1; Ψ2; . . . ; Ψη] f
= [(Ψ1f)1; . . . ; (Ψ1f)N ; . . . ; (Ψηf)1; . . . ; (Ψηf)N]
= [(Φf)1; (Φf)2; . . . ; (Φf)ηN] ,

where for every j, Ψj : RN → RN is a graph Fourier
multiplier operator with multiplier gj(·), and

(Φf)(j−1)N+n =
N−1∑
`=0

gj(λ`)f̂(`)χ`(n), (6)

for j ∈ {1, 2, . . . , η}, n ∈ {1, 2, . . . , N}.

1N 1

f N

=

Ψ2

Ψη

ηN .
.
.

Ψ1

(Ψηf) 1

(Ψ1f) 1

ηN

(Ψ1f) N

(Ψηf) N

.

.

.

(Ψ2f) 1

(Ψ2f) N

Φf =

Fig. 1. Application of a union of graph Fourier multiplier operators.

C. The Chebyshev Polynomial Approximation

Exactly computing Φf requires explicit computation of the
entire set of eigenvectors and eigenvalues of L, which becomes
computationally challenging as the size of the network, N , in-
creases, even in a centralized setting. As discussed in detail in
[20, Section 6], a computationally efficient approximation Φ̃f
of Φf can be computed by approximating each multiplier gj(·)
by a truncated series of shifted Chebyshev polynomials. Doing
so circumvents the need to compute the full set of eigenvectors
and eigenvalues of L. We summarize this approach below.

For y ∈ [−1, 1], the Chebyshev polynomials
{Tk(y)}k=0,1,2,... are generated by

Tk(y) :=

1, if k = 0
y, if k = 1
2yTk−1(y)− Tk−2(y), if k ≥ 2

.

These Chebyshev polynomials form an orthogonal basis for

L2

(
[−1, 1], dy√

1−y2

)
. So every function h on [−1, 1] that is

square integrable with respect to the measure dy/
√

1− y2

can be represented as h(y) = 1
2b0 +

∑∞
k=1 bkTk(y), where

{bk}k=0,1,... is a sequence of Chebyshev coefficients that
depends on h(·). For a detailed overview of Chebyshev
polynomials, including the above definitions and properties,
see [23]-[25].

By shifting the domain of the Chebyshev polynomials to
[0, λmax] via the transformation x = λmax

2 (y + 1), we can
represent each multiplier as

gj(x) =
1
2
cj,0 +

∞∑
k=1

cj,kT k(x), for all x ∈ [0, λmax], (7)

where

T k(x) := Tk

(
x− α
α

)
,

α :=
λmax

2
, and

cj,k :=
2
π

∫ π

0

cos(kθ) gj
(
α
(
cos(θ) + 1

))
dθ. (8)

For k ≥ 2, the shifted Chebyshev polynomials satisfy

T k(x) =
2
α

(x− α)T k−1(x)− T k−2(x).

Thus, for any f ∈ RN , we have

T k(L)f =
2
α

(L − αI)
(
T k−1(L)f

)
− T k−2(L)f, (9)

where T k(L) ∈ RN×N and the nth element of T k(L)f is
given by

(
T k(L)f

)
n

:=
N−1∑
`=0

T k(λ`)f̂(`)χ`(n). (10)

Now, to approximate the operator Φ, we can approximate
each multiplier gj(·) by the first M terms in its Chebyshev
polynomial expansion (7). Then, for every j ∈ {1, 2, . . . , η}
and n ∈ {1, 2, . . . , N}, we have(

Φ̃f
)

(j−1)N+n

:=

(
1
2
cj,0f +

M∑
k=1

cj,kT k(L)f

)
n

(11)

(3),(10)
=

N−1∑
`=0

[
1
2
cj,0 +

M∑
k=1

cj,kT k(λ`)

]
f̂(`)χ`(n)

≈
N−1∑
`=0

[
1
2
cj,0 +

∞∑
k=1

cj,kT k(λ`)

]
f̂(`)χ`(n)

(7)
=

N−1∑
`=0

gj(λ`)f̂(`)χ`(n)

(6)
= (Φf)(j−1)N+n .

To recap, we propose to compute Φ̃f by first computing the
Chebyshev coefficients {cj,k}j=1,2,...,η; k=1,2,...,M according
to (8), and then computing the sum in (11). The computational
benefit of the Chebyshev polynomial approximation arises
in (11) from the fact the vector T k(L)f can be computed
recursively from T k−1(L)f and T k−2(L)f according to (9).
The computational cost of doing so is dominated by the
matrix-vector multiplication of the graph Laplacian L, which
is proportional to the number of edges, |E| [20]. Therefore,
if the underlying communication graph is sparse (i.e., |E|
scales linearly with the network size N), it is far more
computationally efficient to compute Φ̃f than Φf . Finally,
we note that in practice, setting the Chebyshev approximation
order M to around 20 results in Φ̃ approximating Φ very
closely in all of the applications we have examined.

IV. DISTRIBUTED COMPUTATION

In the previous section, we showed that the Chebyshev
polynomial approximation to a union of graph Fourier mul-
tipliers provides computational efficiency gains, even in a
centralized computation setting. In this section, we discuss the
second benefit of the Chebyshev polynomial approximation: it
is easily distributable.

A. Distributed Computation of Φ̃f
We consider the following scenario. There is a network of N

nodes, and each node n begins with the following knowledge:
• f(n), the nth component of the signal f
• The identity of its neighbors, and the weights of the graph

edges connecting itself to each of its neighbors
• The first M Chebyshev coefficients, cj,k, for j ∈
{1, 2, . . . , η} and k ∈ {0, 1, 2, . . . ,M}. These can either
be computed centrally according to (8) and then trans-
mitted throughout the network, or each node can begin
with knowledge of the multipliers, {gj(·)}j=1,2,...,η, and
precompute the Chebyshev coefficients according to (8)

• An upper bound on λmax, the largest eigenvalue of the
graph Laplacian. This bound need not be tight, so we
can precompute a bound such as λmax ≤ max{d(m) +
d(n);m ∼ n}, where d(n) is the degree of node n [26]

The task is for each network node n to compute{(
Φ̃f
)

(j−1)N+n

}
j=1,2,...,η

(12)

by iteratively exchanging messages with its local neighbors in
the network and performing some computations.

As a result of (11), for node n to compute the desired
sequence in (12), it suffices to learn

{(
T k(L)f

)
n

}
k=1,2,...,M

.
Note that

(
T 1(L)f

)
n

=
(

1
α (L − αI)f

)
n

and Ln,m = 0
for all nodes m that are not neighbors of node n. Thus, to
compute

(
T 1(L)f

)
n

, sensor node n just needs to receive
f(m) from all neighbors m. So once all nodes send their
component of the signal to their neighbors, they are able
to compute their respective components of T 1(L)f . In the
next step, each node n sends the newly computed quantity(
T 1(L)f

)
n

to all of its neighbors, enabling the distributed
computation of T 2(L)f according to (9). The iterative process
of computation and local communication continues for M
rounds until each node n has computed the required sequence{(
T k(L)f

)
n

}
k=1,2,...,M

. In all, 2M |E| messages of length
1 are required for every node n to compute its sequence of
coefficients in (12) in a distributed fashion. This distributed
computation process is summarized in Algorithm 1.

An important point to emphasize again is that although the
operator Φ and its approximation Φ̃ are defined through the
eigenvectors of the graph Laplacian, the Chebyshev polyno-
mial approximation helps the sensor nodes apply the operator
to the signal without explicitly computing (individually or
collectively) the eigenvalues or eigenvectors of the Laplacian,
other than the upper bound on its spectrum. Rather, they
initially communicate their component of the signal to their
neighbors, and then communicate simple weighted combi-
nations of the messages received in the previous stage in
subsequent iterations. In this way, information about each
component of the signal f diffuses through the network with-
out direct communication between non-neighboring nodes.

B. Distributed Computation of Φ̃∗a
The application of the adjoint Φ̃∗ of the Chebyshev poly-

nomial approximate operator Φ̃ can also be computed in a

Algorithm 1 Distributed Computation of Φ̃f
Inputs at node n: fn, Ln,m ∀m, {ck,j}j=1,2,...,η; k=0,1,...,M ,
and λmax

Outputs at node n:
{(

Φ̃f
)

(j−1)N+n

}
j=1,2,...,η

1: Set
(
T 0(L)f

)
n

= fn
2: Transmit fn to all neighbors Nn := {m : Ln,m < 0}
3: Receive fm from all neighbors Nn
4: Compute and store(

T 1(L)f
)
n

=
∑

m∈Nn∪n

1
α
Ln,mfm − fn

5: for k = 2, . . . ,M do
6: Transmit

(
T k−1(L)f

)
n

to all neighbors Nn
7: Receive

(
T k−1(L)f

)
m

from all neighbors Nn
8: Compute and store(

T k(L)f
)
n

=
∑

m∈Nn∪n

2
α
Ln,m

(
T k−1(L)f

)
m

− 2
(
T k−1(L)f

)
n
−
(
T k−2(L)f

)
n

9: end for
10: for j ∈ {1, 2, . . . , η} do
11: Output(

Φ̃f
)

(j−1)N+n
=

1
2
cj,0fn +

M∑
k=1

cj,k
(
T k(L)f

)
n

12: end for

distributed manner. Let

a = [a1; a2; . . . ; aη] ∈ RηN ,

where aj ∈ RN . Then it is straightforward to show that(
Φ̃∗a

)
n

=
η∑
j=1

(
1
2
cj,0aj +

M∑
k=1

cj,kT k(L)aj

)
n

. (13)

We assume each node n starts with knowledge of aj(n) for all
j ∈ {1, 2, . . . , η}. For each j ∈ {1, 2, . . . , η}, the distributed
computation of the corresponding term on the right-hand side
of (13) is done in an analogous manner to the distributed
computation of Φ̃f discussed above. Since this has to be done
for each j, 2M |E| messages, each a vector of length η, are
required for every node n to compute

(
Φ̃∗a

)
n

.

C. Distributed Computation of Φ̃∗Φ̃f

Using the property of Chebyshev polynomials that

Tk(x)Tk′(x) =
1
2
[
Tk+k′(x) + T|k−k′|(x)

]
,

we can write (see [20] for a similar calculation)(
Φ̃∗Φ̃f

)
n

=

(
1
2
d0f +

2M∑
k=1

dkT k(L)f

)
n

.

Therefore, with each node n starting with f(n) as in Section
IV-A, the nodes can compute Φ̃∗Φ̃f in a distributed manner
using 4M |E| messages of length 1, with each node n finishing
with knowledge of

(
Φ̃∗Φ̃f

)
n

.

V. APPLICATION EXAMPLES

In this section, we provide more detailed explanations
of how the Chebyshev polynomial approximation of graph
Fourier multipliers can be used in the context of specific
distributed signal processing tasks.

A. Distributed Smoothing

Perhaps the simplest example application is distributed
smoothing with the heat kernel as the graph Fourier multiplier.
One way to smooth a signal y ∈ RN is to compute Hty, where,
for a fixed t, (Hty)(n) :=

∑N−1
`=0 e−tλ` ŷ(`)χ`(n). Ht clearly

satisfies our definition of a graph Fourier multiplier operator
(with η = 1). In the context of a centralized image smoothing
application, [13] discusses in detail the heat kernel, Ht, and
its relationship to classical Gaussian filtering. Similar to the
example at the end of Section III-A, the main idea is that the
multiplier e−tλ` acts as a low-pass filter that attenuates the
higher frequency (less smooth) components of y.

Now, to perform distributed smoothing, we just need to
compute H̃ty in a distributed manner according to Algorithm
1, where H̃t is the shifted Chebyshev polynomial approxima-
tion to the graph Fourier multiplier operator Ht.

B. Distributed Regularization

Regularization is a common signal processing technique to
solve ill-posed inverse problems using a priori information
about a target signal to recover it accurately. Here we use
regularization to solve the distributed denoising task discussed
in Section I, starting with a noisy signal y ∈ RN defined on
a graph of N sensors. The prior belief we want to enforce is
that the target signal is smooth with respect to the underlying
graph topology. The class of regularization terms we consider
is fTLrf for r ≥ 1, and the resulting regularization problem
has the form

argmin
f

τ

2
‖f − y‖22 + fTLrf. (14)

To see intuitively why incorporating such a regularization term
into the objective function encourages smooth signals (with
r = 1 as an example), note that fTLf = 0 if and only if f is
constant across all vertices, and, more generally

fTLf =
1
2

∑
n∈V

∑
m∼n

Am,n [f(m)− f(n)]2 ,

so fTLf is small when the signal f has similar values at
neighboring vertices with large weights (i.e., it is smooth).

We now show how our novel method is useful in solving
this distributed regularization problem.

Proposition 1: The solution to (14) is given by Ry, where
R is a graph Fourier multiplier operator of the form (5), with
multiplier g(λ`) = τ

τ+2λr
`

.1

Proof: The objective function in (14) is convex in f .
Differentiating it with respect to f , any solution f∗ to

Lrf∗ +
τ

2
(f∗ − y) = 0 (15)

is a solution to (14).2 Taking the graph Fourier transform of
(15) yields

L̂rf∗(`) + τ
2

(
f̂∗(`)− ŷ(`)

)
= 0, (16)

∀` ∈ {0, 1, . . . , N − 1}.

From the real, symmetric nature of L and the definition of the
Laplacian eigenvectors (Lχ` = λ`χ`), we have:

L̂rf∗(`) = χ∗`Lrf∗ = (Lrχ`)∗ f∗ = λr`χ
∗
`f∗ = λr` f̂∗(`). (17)

Substituting (17) into (16) and rearranging, we have

f̂∗(`) =
τ

τ + 2λr`
ŷ(`), ∀` ∈ {0, 1, . . . , N − 1}. (18)

Finally, taking the inverse graph Fourier transform of (18), we
have

f∗(n) =
N−1∑
`=0

f̂∗(`)χ`(n) =
N−1∑
`=0

[
τ

τ + 2λr`

]
ŷ(`)χ`(n), (19)

∀n ∈ {1, 2, . . . , N}.

So, one way to do distributed denoising is to compute
R̃y, the Chebyshev polynomial approximation of Ry, in a
distributed manner via Algorithm 1. We show this now with a
numerical example. We place 500 sensors randomly in the
[0, 1] × [0, 1] square. We then construct a weighted graph
according to the thresholded Gaussian kernel weighting (1)
with σ = 0.074 and κ = 0.600, so that two sensor nodes
are connected if their physical separation is less than 0.075.
We create a smooth 500-dimensional signal with the nth

component given by f0
n = n2

x + n2
y − 1, where nx and ny are

node n’s x and y coordinates in [0, 1]× [0, 1]. One instance of
such a network and signal f0 are shown in Figure 2, and the
eigenvectors of the graph Laplacian are shown in Figure 3.

Next, we corrupt each component of the signal f0 with
uncorrelated additive Gaussian noise with mean zero and stan-
dard deviation 0.5. Then we apply the graph Fourier multiplier
operator R̃, the Chebyshev polynomial approximation to R
from Proposition 1, with τ = r = 1. The multiplier and its
Chebyshev polynomial approximations are shown in Figure 4,
and the denoised signal R̃y is shown in Figure 5. We repeated
this entire experiment 1000 times, with a new random graph
and random noise each time, and the average mean square
error for the denoised signals was 0.013, as compared to 0.250
average mean square error for the noisy signals.

1This filter g(λ`) is the graph analog of a first-order Bessel filter from
classical signal processing of functions on the real line.

2In the case r = 1, the optimality equation (15) corresponds to the
optimality equation in [12, Section III-A] with p = 2 in that paper.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 2. A network of 500 sensors placed randomly in the [0, 1] × [0, 1]
square. The background colors represent the values of the smooth signal f0.

χ0

(a)

χ1

(b)

χ2

(c)

χ50

(d)

Fig. 3. Some eigenvectors of the Laplacian of the graph shown in Figure
2. The blue bars represent positive values and the black bars negative values.
(a) χ0, the constant eigenvector associated with λ0 = 0. (b) χ1, the Fiedler
vector associated with the lowest strictly positive eigenvalue, nicely separates
the graph into two components. (c) χ2 is also a smooth eigenvector. (d) χ50

is far less smooth with some large differences across neighboring nodes.

We conclude this section by returning to the distributed
binary classification task discussed in the introduction. In [9],
Belkin et al. show that the regularizer fTLrf also works
well in graph-based semi-supervised learning. One approach to
distributed binary classification is to let yn be the labels (-1 or
1) of those nodes who know their labels, and 0 otherwise. Then
the nodes compute R̃y in a distributed manner via Algorithm
1, and each node n sets it label to 1 if (R̃y)n ≥ 0 and -1
otherwise. We believe our approach to distributedly applying
graph Fourier multipliers can also be used for more general
learning problems, but we leave this for future work.

C. Distributed Wavelet Denoising

In this section, we consider an alternate method of dis-
tributed denoising that may be better suited to signals that are
piecewise smooth on the graph, but not necessarily globally
smooth. The setup is the same as in Section V-B, with a noisy
signal y ∈ RN , and each sensor n observing yn. Instead of

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ

Exact Multiplier

Chebyshev Polynomial Approximation, M=5

Chebyshev Polynomial Approximation, M=15

Fig. 4. The regularizing multiplier τ
τ+2λr

`
associated with the graph

Fourier multiplier operator R from Proposition 1. Here, r = τ = 1.
Shifted Chebyshev polynomial approximations to the multiplier are shown
for different values of the approximation order M .

Original Signal

(a)

Noise

(b)

Noisy Signal

(c)

Denoised Signal

(d)

Fig. 5. A denoising example on the graph shown in Figure 2, using the
regularizing multiplier shown in Figure 4. (a) The original signal n2

x+n2
y−1,

where nx and ny are the x and y coordinates of sensor node n. (b) The
additive Gaussian noise. (c) The noisy signal y. (d) The denoised signal R̃y.

starting with a prior that the signal is globally smooth, we start
with a prior belief that the signal is sparse in the spectral graph
wavelet domain [20]. The spectral graph wavelet transform,
W , defined in [20], is precisely of the form of Φ in (6).
Namely, it is composed of one multiplier, h(·), that acts as
a low-pass filter to stably represent the signal’s low frequency
content, and J wavelet operators, defined by gj(λ`) = g(tjλ`),
where {tj}j=1,2,...,J is a set of scales and g(·) is the wavelet
multiplier that acts as a band-pass filter.

The most common way to incorporate a sparse prior in a
centralized setting is to regularize via a weighted version of the
least absolute shrinkage and selection operator (lasso) [27],
also called basis pursuit denoising [28]:

argmin
a

1
2
‖y −W ∗a‖22 + ‖a‖1,µ , (20)

where ‖a‖1,µ :=
∑N(J+1)
i=1 µi |ai|. The optimization problem

in (20) can be solved for example by iterative soft thresholding

[29]. The initial estimate of the wavelet coefficients a(0)

is arbitrary, and at each iteration of the soft thresholding
algorithm, the update of the estimated wavelet coefficients is
given by

a
(k)
i = Sµiτ

((
a(k−1) + τW

[
y −W ∗a(k−1)

])
i

)
,

i = 1, 2, . . . , N(J + 1); k = 1, 2, . . . (21)

where τ is the step size and Sµiτ is the shrinkage or soft
thresholding operator

Sµiτ (z) :=
{

0 , if | z |≤ µiτ
z − sgn(z)µiτ , o.w. .

The iterative soft thresholding algorithm converges to a∗, the
minimizer of (20), if τ < 2

‖W∗‖2 [30]. The final denoised
estimate of the signal is then given by W ∗a∗.

We now turn to the issue of how to implement the above al-
gorithm in a distributed fashion by sending messages between
neighbors in the network. One option would be to use the
distributed lasso algorithm of [19], which is a special case of
the Alternating Direction Method of Multipliers [31, p. 253].
In every iteration of that algorithm, each node transmits its
current estimate of all the wavelet coefficients to its local
neighbors. With a transform the size of the spectral graph
wavelet transform, this requires 2|E| total messages at every
iteration, with each message being a vector of length N(J+1).
A method where the amount of communicated information
does not grow with N (beyond the number of edges, |E|)
would be highly preferable.

The Chebyshev polynomial approximation of the spectral
graph wavelet transform allows us to accomplish this goal. Our
approach is to approximate W by W̃ , and use the distributed
implementation of the approximate wavelet transform and its
adjoint to perform iterative soft thresholding. In the first soft
thresholding iteration, each node n must learn (W̃y)(j−1)N+n

at all scales j, via Algorithm 1. These coefficients are then
stored for future iterations. In the kth iteration, each node n
must learn the J + 1 coefficients of W̃W̃ ∗a(k−1) centered
at n, by sequentially applying the operators W̃ ∗ and W̃ in a
distributed manner via the methods of Sections IV-B and IV-A,
respectively. Finally, when a stopping criterion for the soft
thresholding is satisfied, the adjoint operator W̃ ∗ is applied
again in a distributed manner to the resulting coefficients ã∗,
and node n’s denoised estimate of its signal is

(
W̃ ∗ã∗

)
n

.
We now examine the communication requirements of this

approach. Recall from Section IV that 2M |E| messages
of length 1 are required to compute W̃y in a distributed
fashion. Distributed computation of W̃W̃ ∗a(k−1), the other
term needed in the iterative thresholding update (21), requires
2M |E| messages of length J + 1 and 2M |E| messages of
length 1. The final application of the adjoint operator W̃ ∗ to
recover the denoised signal estimates requires another 2M |E|
messages, each a vector of length J+1. Therefore, the Cheby-
shev polynomial approximation to the spectral graph wavelet
transform enables us to iteratively solve the weighted lasso
in a distributed manner where the communication workload

only scales with the size of the network through |E|, and is
otherwise independent of the network dimension N .

VI. CONCLUDING REMARKS AND FUTURE WORK

We presented a novel method to distribute a class of linear
operators called unions of graph Fourier multiplier operators.
The main idea is to approximate the graph Fourier multipliers
by Chebyshev polynomials, whose recurrence relations make
them readily amenable to distributed computation in a sensor
network. Key takeaways from the discussion and application
examples include:
• A number of distributed signal processing tasks can

be represented as distributed applications of unions of
graph Fourier multiplier operators (and their adjoints) to
signals on weighted graphs. Examples include distributed
smoothing, denoising, and semi-supervised learning.

• The graph Fourier multiplier operators are the graph ana-
log of filter banks, as they reshape functions’ frequencies
through multiplication in the Fourier domain.

• The amount of communication required to perform the
distributed computations only scales with the size of the
network through the number of edges of the communica-
tion graph, which is usually sparse. Therefore, the method
is well suited to large-scale sensor networks.

Our ongoing work includes extending the scope and depth
of our application examples. In addition to considering more
applications and larger size networks, we plan a more thorough
empirical comparison of the computation and communication
requirements of the approach described in this paper to al-
ternative distributed optimization methods. The second major
line of ongoing work is to analyze robustness issues that arise
in real networks. For instance, we would like to incorporate
quantization and communication noise into the sensor network
model, in order to see how these propagate when using the
Chebyshev polynomial approximation approach to distributed
signal processing tasks. It is also important to analyze the
effects of a sensor node dropping out of the network or
communicating nodes losing synchronicity to ensure that the
proposed method is stable to these disturbances.

REFERENCES

[1] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,”
in Proc. Int. Symp. Inf. Process. Sensor Netw., Berkeley, CA, Apr. 2004,
pp. 20–27.

[2] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “Distributed learning in
wireless sensor networks,” IEEE Signal Process. Mag., vol. 23, pp. 56–
69, Jul. 2006.

[3] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proc. IEEE, vol. 95, no. 1, pp. 215–
233, Jan. 2007.

[4] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione,
“Gossip algorithms for distributed signal processing,” Proc. IEEE,
vol. 98, no. 11, pp. 1847–1864, Nov. 2010.

[5] A. J. Smola and R. Kondor, “Kernels and regularization on graphs,” in
Proc. Ann. Conf. Comp. Learn. Theory, ser. Lect. Notes Comp. Sci.,
B. Schölkopf and M. Warmuth, Eds. Springer, 2003, pp. 144–158.

[6] D. Zhou and B. Schölkopf, “A regularization framework for learning
from graph data.” in Proc. ICML Workshop Stat. Relat. Learn. and Its
Connections to Other Fields, Jul. 2004, pp. 132–137.

[7] ——, “Regularization on discrete spaces,” in Pattern Recogn., ser. Lect.
Notes Comp. Sci., W. G. Kropatsch, R. Sablatnig, and A. Hanbury, Eds.
Springer, 2005, vol. 3663, pp. 361–368.

[8] X. Zhu and Z. Ghahramani, “Semi-supervised learning using Gaussian
fields and harmonic functions,” in Proc. Int. Conf. Mach. Learn.,
Washington, D.C., Aug. 2003, pp. 912–919.

[9] M. Belkin, I. Matveeva, and P. Niyogi, “Regularization and semi-
supervised learning on large graphs,” in Learn. Theory, ser. Lect. Notes
Comp. Sci. Springer-Verlag, 2004, pp. 624–638.

[10] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf, “Learning
with local and global consistency,” in Adv. Neural Inf. Process. Syst.,
S. Thrun, L. Saul, and B. Schölkopf, Eds. MIT Press, 2004, pp. 321–
328.

[11] S. Bougleux, A. Elmoataz, and M. Melkemi, “Discrete regularization
on weighted graphs for image and mesh filtering,” in Scale Space Var.
Methods Comp. Vision, ser. Lect. Notes Comp. Sci., F. Sgallari, A. Murli,
and N. Paragios, Eds. Springer, 2007, vol. 4485, pp. 128–139.

[12] A. Elmoataz, O. Lezoray, and S. Bougleux, “Nonlocal discrete regu-
larization on weighted graphs: a framework for image and manifold
processing,” IEEE Trans. Image Process., vol. 17, pp. 1047–1060, Jul.
2008.

[13] F. Zhang and E. R. Hancock, “Graph spectral image smoothing using
the heat kernel,” Pattern Recogn., vol. 41, pp. 3328–3342, Nov. 2008.

[14] G. Peyré, S. Bougleux, and L. Cohen, “Non-local regularization of
inverse problems,” in Proc. ECCV’08, ser. Lect. Notes Comp. Sci., D. A.
Forsyth, P. H. S. Torr, and A. Zisserman, Eds. Springer, 2008, pp. 57–
68.

[15] R. Wagner, V. Delouille, and R. Baraniuk, “Distributed wavelet de-
noising for sensor networks,” in Proc. IEEE Int. Conf. Dec. and Contr.,
San Diego, CA, Dec. 2006, pp. 373–379.

[16] S. Barbarossa, G. Scutari, and T. Battisti, “Distributed signal subspace
projection algorithms with maximum convergence rate for sensor net-
works with topological constraints,” in Proc. IEEE Int. Conf. Acc.,
Speech, and Signal Process., Taipei, Apr. 2009, pp. 2893–2896.

[17] C. Guestrin, P. Bodik, R. Thibaux, M. Paskin, and S. Madden, “Dis-
tributed regression: an efficient framework for modeling sensor network
data,” in Proc. Int. Symp. Inf. Process. Sensor Netw., Berkeley, CA, Apr.
2004, pp. 1–10.

[18] J. B. Predd, S. R. Kulkarni, and H. V. Poor, “A collaborative training
algorithm for distributed learning,” IEEE Trans. Inf. Theory, vol. 55,
no. 4, pp. 1856–1871, Apr. 2009.

[19] G. Mateos, J.-A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp.
5262–5276, Oct. 2010.

[20] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on
graphs via spectral graph theory,” Appl. Comput. Harmon. Anal., vol. 30,
no. 2, pp. 129–150, Mar. 2011.

[21] F. K. Chung, Spectral Graph Theory. Vol. 92 of the CBMS Regional
Conference Series in Mathematics, AMS Bokstore, 1997.

[22] T. Bıyıkoğlu, J. Leydold, and P. F. Stadler, Laplacian Eigenvectors of
Graphs. Lecture Notes in Mathematics, vol. 1915, Springer, 2007.

[23] J. C. Mason and D. C. Handscomb, Chebyshev Polynomials. Chapman
and Hall, 2003.

[24] G. M. Phillips, Interpolation and Approximation by Polynomials. CMS
Books in Mathematics, Springer-Verlag, 2003.

[25] T. J. Rivlin, Chebyshev Polynomials. Wiley-Interscience, 1990.
[26] W. N. Anderson and T. D. Morley, “Eigenvalues of the Laplacian of a

graph,” Linear Multilinear Algebra, vol. 18, no. 2, pp. 141–145, 1985.
[27] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J.

Royal. Statist. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.
[28] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis

pursuit,” SIAM J. Sci. Comp., vol. 20, no. 1, pp. 33–61, Aug. 1998.
[29] I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding al-

gorithm for linear inverse problems with a sparsity constraint,” Commun.
Pure Appl. Math., vol. 57, no. 11, pp. 1413–1457, Nov. 2004.

[30] P. L. Combettes and V. R. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Model. Sim., vol. 4, no. 4, pp. 1168–
1200, Nov. 2005.

[31] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computa-
tion: Numerical Methods. Prentice-Hall, 1989.

