4 research outputs found

    Dynamic Three-Dimensional Shoulder Mri during Active Motion for Investigation of Rotator Cuff Diseases.

    Get PDF
    BACKGROUND: MRI is the standard methodology in diagnosis of rotator cuff diseases. However, many patients continue to have pain despite treatment, and MRI of a static unloaded shoulder seems insufficient for best diagnosis and treatment. This study evaluated if Dynamic MRI provides novel kinematic data that can be used to improve the understanding, diagnosis and best treatment of rotator cuff diseases. METHODS: Dynamic MRI provided real-time 3D image series and was used to measure changes in the width of subacromial space, superior-inferior translation and anterior-posterior translation of the humeral head relative to the glenoid during active abduction. These measures were investigated for consistency with the rotator cuff diseases classifications from standard MRI. RESULTS: The study included: 4 shoulders with massive rotator cuff tears, 5 shoulders with an isolated full-thickness supraspinatus tear, 5 shoulders with tendinopathy and 6 normal shoulders. A change in the width of subacromial space greater than 4mm differentiated between rotator cuff diseases with tendon tears (massive cuff tears and supraspinatus tear) and without tears (tendinopathy) (p = 0.012). The range of the superior-inferior translation was higher in the massive cuff tears group (6.4mm) than in normals (3.4mm) (p = 0.02). The range of the anterior-posterior translation was higher in the massive cuff tears (9.2 mm) and supraspinatus tear (9.3 mm) shoulders compared to normals (3.5mm) and tendinopathy (4.8mm) shoulders (p = 0.05). CONCLUSION: The Dynamic MRI enabled a novel measure; 'Looseness', i.e. the translation of the humeral head on the glenoid during an abduction cycle. Looseness was better able at differentiating different forms of rotator cuff disease than a simple static measure of relative glenohumeral position.The authors received no specific funding for this work

    Sensory Neurotization of the Ulnar Nerve, Surgical Techniques and Functional Outcomes: A Review

    No full text
    When ulnar nerve lesions happen above the wrist level, sensation recovery after acute repair or nerve grafting is often challenging. Distal sensory nerve transfers may be an option for overcoming these sequelae. However, little data has been published on this topic. This study aims to review the surgical procedures currently proposed, along with their functional results. Six donor nerves have been described at the wrist level: the palmar branch of the median nerve, the cutaneous branch of the median nerve to the palm with or without fascicles of the ulnar digital nerve of the index finger, the posterior interosseous nerve, the third palmar digital nerve, the radial branch of the superficial radial nerve, the median nerve, and the fascicule for the third web space. Three donor nerves have been reported at the hand level: the ulnar digital nerves of the index, and the radial or ulnar digital nerves of the long finger. Three target sites were used: the superficial branch of the ulnar nerve, the dorsal branch of the ulnar nerve, and the ulnar digital branch of the fifth digit. All the technical points have been illustrated with anatomical dissection pictures. After assessing sensory recovery using the British Medical Research Council scale, a majority of excellent recoveries scaled S3+ or S4 have been reported in the targeted territory for each technique

    Sensory Neurotization of the Ulnar Nerve, Surgical Techniques and Functional Outcomes: A Review

    No full text
    When ulnar nerve lesions happen above the wrist level, sensation recovery after acute repair or nerve grafting is often challenging. Distal sensory nerve transfers may be an option for overcoming these sequelae. However, little data has been published on this topic. This study aims to review the surgical procedures currently proposed, along with their functional results. Six donor nerves have been described at the wrist level: the palmar branch of the median nerve, the cutaneous branch of the median nerve to the palm with or without fascicles of the ulnar digital nerve of the index finger, the posterior interosseous nerve, the third palmar digital nerve, the radial branch of the superficial radial nerve, the median nerve, and the fascicule for the third web space. Three donor nerves have been reported at the hand level: the ulnar digital nerves of the index, and the radial or ulnar digital nerves of the long finger. Three target sites were used: the superficial branch of the ulnar nerve, the dorsal branch of the ulnar nerve, and the ulnar digital branch of the fifth digit. All the technical points have been illustrated with anatomical dissection pictures. After assessing sensory recovery using the British Medical Research Council scale, a majority of excellent recoveries scaled S3+ or S4 have been reported in the targeted territory for each technique
    corecore