240 research outputs found

    Molecular Dynamics Driven Design of pH-Stabilized Mutants of MNEI, a Sweet Protein

    Get PDF
    MNEI is a single chain derivative of monellin, a plant protein that can interact with the human sweet taste receptor, being therefore perceived as sweet. This unusual physiological activity makes MNEI a potential template for the design of new sugar replacers for the food and beverage industry. Unfortunately, applications of MNEI have been so far limited by its intrinsic sensitivity to some pH and temperature conditions, which could occur in industrial processes. Changes in physical parameters can, in fact, lead to irreversible protein denaturation, as well as aggregation and precipitation. It has been previously shown that the correlation between pH and stability in MNEI derives from the presence of a single glutamic residue in a hydrophobic pocket of the protein. We have used molecular dynamics to study the consequences, at the atomic level, of the protonation state of such residue and have identified the network of intramolecular interactions responsible for MNEI stability at acidic pH. Based on this information, we have designed a pH-independent, stabilized mutant of MNEI and confirmed its increased stability by both molecular modeling and experimental techniques

    Acetate: friend or foe? Efficient production of a sweet protein in Escherichia coli BL21 using acetate as a carbon source

    Get PDF
    Escherichia coli is, to date, the most used microorganism for the production of recombinant proteins and biotechnologically relevant metabolites. High density cell cultures allow efficient biomass and protein yields. However, their main limitation is the accumulation of acetate as a by-product of unbalanced carbon metabolism. Increased concentrations of acetate can inhibit cellular growth and recombinant protein production, and many efforts have been made to overcome this problem. On the other hand, it is known that E. coli is able to grow on acetate as the sole carbon source, although this mechanism has never been employed for the production of recombinant proteins

    Striking Dependence of Protein Sweetness on Water Quality: The Role of the Ionic Strength

    Get PDF
    Sweet proteins are the sweetest natural molecules. This aspect prompted several proposals for their use as food additives, mainly because the amounts to be added to food would be very small and safe for people suffering from sucrose-linked diseases. During studies of sweet proteins as food additives we found that their sweetness is affected by water salinity, while there is no influence on protein’s structure. Parallel tasting of small size sweeteners revealed no influence of the water quality. This result is explained by the interference of ionic strength with the mechanism of action of sweet proteins and provides an experimental validation of the wedge model for the interaction of proteins with the sweet receptor

    Sweeter and stronger: Enhancing sweetness and stability of the single chain monellin MNEI through molecular design

    Get PDF
    Sweet proteins are a family of proteins with no structure or sequence homology, able to elicit a sweet sensation in humans through their interaction with the dimeric T1R2-T1R3 sweet receptor. In particular, monellin and its single chain derivative (MNEI) are among the sweetest proteins known to men. Starting from a careful analysis of the surface electrostatic potentials, we have designed new mutants of MNEI with enhanced sweetness. Then, we have included in the most promising variant the stabilising mutation E23Q, obtaining a construct with enhanced performances, which combines extreme sweetness to high, pH-independent, thermal stability. The resulting mutant, with a sweetness threshold of only 0.28 mg/L (25 nM) is the strongest sweetener known to date. All the new proteins have been produced and purified and the structures of the most powerful mutants have been solved by X-ray crystallography. Docking studies have then confirmed the rationale of their interaction with the human sweet receptor, hinting at a previously unpredicted role of plasticity in said interactio

    Enforcing the positive charge of N-termini enhances membrane interaction and antitumor activity of bovine seminal ribonuclease

    Get PDF
    AbstractBinding to cell membrane, followed by translocation into the cytosol and RNA degradation, is a necessary requirement to convert a ribonuclease into a cytotoxin for malignant tumor cells. In this paper, we investigate the membrane binding attitude of bovine seminal ribonuclease (BS-RNase) and its variant G38K-BS-RNase, bearing an enforced cluster of positive charges at the N-termini surface. By using a combination of biophysical techniques, including CD, SPR and ESR, we find for the two proteins a common, two-step mechanism of interaction with synthetic liposomes, an initial binding to the bilayer surface, driven by electrostatic interactions, followed by a shallow penetration in the lipid core. Protein binding effectively perturbs lipid packing and dynamics. Remarkably, the higher G38K-BS-RNase membrane interacting capability well correlates with its increased cytotoxicity for tumor cells. Overall, these studies shed light on the mechanism of membrane binding and perturbation, proving definitely the importance of electrostatic interactions in the cytotoxic activity of BS-RNase, and provide a rational basis to design proteins with anticancer potential

    A Super Stable Mutant of the Plant Protein Monellin Endowed with Enhanced Sweetness

    Get PDF
    Sweet proteins are a class of proteins with the ability to elicit a sweet sensation in humans upon interaction with sweet taste receptor T1R2/T1R3. Single-chain Monellin, MNEI, is among the sweetest proteins known and it could replace sugar in many food and beverage recipes. Nonetheless, its use is limited by low stability and high aggregation propensity at neutral pH. To solve this inconvenience, we designed a new construct of MNEI, dubbed Mut9, which led to gains in both sweetness and stability. Mut9 showed an extraordinary stability in acidic and neutral environments, where we observed a melting temperature over 20 C higher than that of MNEI. In addition, Mut9 resulted twice as sweet than MNEI. Both proteins were extensively characterized by biophysical and sensory analyses. Notably, Mut9 preserved its structure and function even after 10 min boiling, with the greatest differences being observed at pH 6.8, where it remained folded and sweet, whereas MNEI lost its structure and function. Finally, we performed a 6-month shelf-life assessment, and the data confirmed the greater stability of the new construct in a wide range of conditions. These data prove that Mut9 has an even greater potential for food and beverage applications than MNEI

    Evaluation of Auranofin Loading within Ferritin Nanocages

    Get PDF
    Auranofin (AF), a gold(I) compound that is currently used for the treatment of rheumatoid arthritis and is in clinical trials for its promising anticancer activity, was encapsulated within the human H-chain and the horse spleen ferritin nanocages using the alkaline disassembly/reassembly protocol. The aim of the work was to highlight possible differences in their drug loading capacity and efficacy. The drug-loaded ferritins were characterized via UV-vis absorption spectroscopy and inductively coupled plasma-atomic emission spectroscopy to assess AF encapsulation and to define the exact amount of gold atoms trapped in the Ft cavity. The crystal structures allowed us to define the nature of AF interaction with both ferritins and to identify the gold binding sites. Moreover, the biological characterization let us to obtain preliminary information on the cytotoxic effect of AF when bound to the human H-chain

    Getting value from the waste: recombinant production of a sweet protein by Lactococcus lactis grown on cheese whey

    Get PDF
    Background Recent biotechnological advancements have allowed for the adoption of Lactococcus lactis, a typical component of starter cultures used in food industry, as the host for the production of food-grade recombinant targets. Among several advantages, L. lactis has the important feature of growing on lactose, the main carbohydrate in milk and a majoritarian component of dairy wastes, such as cheese whey. Results We have used recombinant L. lactis NZ9000 carrying the nisin inducible pNZ8148 vector to produce MNEI, a small sweet protein derived from monellin, with potential for food industry applications as a high intensity sweetener. We have been able to sustain this production using a medium based on the cheese whey from the production of ricotta cheese, with minimal pre-treatment of the waste. As a proof of concept, we have also tested these conditions for the production of MMP-9, a protein that had been previously successfully obtained from L. lactis cultures in standard growth conditions. Conclusions Other than presenting a new system for the recombinant production of MNEI, more compliant with its potential applications in food industry, our results introduce a strategy to valorize dairy effluents through the synthesis of high added value recombinant proteins. Interestingly, the possibility of using this whey-derived medium relied greatly on the choice of the appropriate codon usage for the target gene. In fact, when a gene optimized for L. lactis was used, the production of MNEI proceeded with good yields. On the other hand, when an E. coli optimized gene was employed, protein synthesis was greatly reduced, to the point of being completely abated in the cheese whey-based medium. The production of MMP-9 was comparable to what observed in the reference conditions.info:eu-repo/semantics/publishedVersio

    NMR Studies on Structure and Dynamics of the Monomeric Derivative of BS-RNase: New Insights for 3D Domain Swapping

    Get PDF
    Three-dimensional domain swapping is a common phenomenon in pancreatic-like ribonucleases. In the aggregated state, these proteins acquire new biological functions, including selective cytotoxicity against tumour cells. RNase A is able to dislocate both N- and C-termini, but usually this process requires denaturing conditions. In contrast, bovine seminal ribonuclease (BS-RNase), which is a homo-dimeric protein sharing 80% of sequence identity with RNase A, occurs natively as a mixture of swapped and unswapped isoforms. The presence of two disulfides bridging the subunits, indeed, ensures a dimeric structure also to the unswapped molecule. In vitro, the two BS-RNase isoforms interconvert under physiological conditions. Since the tendency to swap is often related to the instability of the monomeric proteins, in these paper we have analysed in detail the stability in solution of the monomeric derivative of BS-RNase (mBS) by a combination of NMR studies and Molecular Dynamics Simulations. The refinement of NMR structure and relaxation data indicate a close similarity with RNase A, without any evidence of aggregation or partial opening. The high compactness of mBS structure is confirmed also by H/D exchange, urea denaturation, and TEMPOL mapping of the protein surface. The present extensive structural and dynamic investigation of (monomeric) mBS did not show any experimental evidence that could explain the known differences in swapping between BS-RNase and RNase A. Hence, we conclude that the swapping in BS-RNase must be influenced by the distinct features of the dimers, suggesting a prominent role for the interchain disulfide bridges
    • …
    corecore