19 research outputs found

    Sacrificial Adhesive Bonding: A Powerful Method For Fabrication Of Glass Microchips.

    Get PDF
    A new protocol for fabrication of glass microchips is addressed in this research paper. Initially, the method involves the use of an uncured SU-8 intermediate to seal two glass slides irreversibly as in conventional adhesive bonding-based approaches. Subsequently, an additional step removes the adhesive layer from the channels. This step relies on a selective development to remove the SU-8 only inside the microchannel, generating glass-like surface properties as demonstrated by specific tests. Named sacrificial adhesive layer (SAB), the protocol meets the requirements of an ideal microfabrication technique such as throughput, relatively low cost, feasibility for ultra large-scale integration (ULSI), and high adhesion strength, supporting pressures on the order of 5 MPa. Furthermore, SAB eliminates the use of high temperature, pressure, or potential, enabling the deposition of thin films for electrical or electrochemical experiments. Finally, the SAB protocol is an improvement on SU-8-based bondings described in the literature. Aspects such as substrate/resist adherence, formation of bubbles, and thermal stress were effectively solved by using simple and inexpensive alternatives.51327

    Periods of interference of Alexandergrass on morphophysiological and productive characteristics of transgenic soybean.

    Get PDF
    Among the weed species infesting soybean, Alexandergrass (Urochloa plantaginea) is highlighted as one of the most competitive. The objective of this work was to determine the periods of interference of Alexandergrass, and is effects, on morphophysiology and yield components of soybean. Treatments were pooled into two groups: the group ?convivence? comprised soybean growing among Alexandergrass for increasing periods: 0, 7, 14, 21, 28, 35 and 42 days after emergence (DAE), as well as along all the crop cycle. The ?control? group comprised soybean free from competition for the same time lapses. Forty-two DAE, soybean morphophysiology was assessed. There was no effect of the time lpse of Alexandergrass "control" or "convivence" on soybean physiological performance. Plant height, stem diameter, plant dry mass, leaf area and grain yield components of soybean were, however, affected by Alexandergrass. The critical period of interference prevention comprises 26-41 DAE; the period prior to interference is 26 DAE; and the total period of interference prevention is 41 DAE

    An ultrasoft X-ray multi-microbeam irradiation system for studies of DNA damage responses by fixed- and live-cell fluorescence microscopy

    Get PDF
    Localized induction of DNA damage is a valuable tool for studying cellular DNA damage responses. In recent decades, methods have been developed to generate DNA damage using radiation of various types, including photons and charged particles. Here we describe a simple ultrasoft X-ray multi-microbeam system for high dose-rate, localized induction of DNA strand breaks in cells at spatially and geometrically adjustable sites. Our system can be combined with fixed- and live-cell microscopy to study responses of cells to DNA damage

    Cross-Shaped Terahertz Metal Mesh Filters: Historical Review and Results

    Get PDF
    Terahertz frequencies experiments has motivated the development of new sources, detectors and optical components. Here we will present a review of THz bandpass filters ranging from 0.4 to 10 THz. We also demonstrate our fabrication process, simulations and experimental results

    Charge carrier transport in defective reduced graphene oxide as quantum dots and nanoplatelets in multilayer films

    No full text
    FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESGraphene is a breakthrough 2D material due to its unique mechanical, electrical, and thermal properties, with considerable responsiveness in real applications. However, the coverage of large areas with pristine graphene is a challenge and graphene derivatives have been alternatively exploited to produce hybrid and composite materials that allow for new developments, considering also the handling of large areas using distinct methodologies. For electronic applications there is significant interest in the investigation of the electrical properties of graphene derivatives and related composites to determine whether the characteristic 2D charge transport of pristine graphene is preserved. Here, we report a systematic study of the charge transport mechanisms of reduced graphene oxide chemically functionalized with sodium polystyrene sulfonate (PSS), named as GPSS. GPSS was produced either as quantum dots (QDs) or nanoplatelets (NPLs), being further nanostructured with poly(diallyldimethylammonium chloride) through the layer-by-layer (LbL) assembly to produce graphene nanocomposites with molecular level control. Current-voltage (I-V) measurements indicated a meticulous growth of the LbL nanostructures onto gold interdigitated electrodes (IDEs), with a space-charge-limited current dominated by a Mott-variable range hopping mechanism. A 2D intra-planar conduction within the GPSS nanostructure was observed, which resulted in effective charge carrier mobility (mu) of 4.7 cm(2) V-1 s(-1) for the QDs and 34.7 cm(2) V-1 s(-1) for the NPLs. The LbL assemblies together with the dimension of the materials (QDs or NPLs) were favorably used for the fine tuning and control of the charge carrier mobility inside the LbL nanostructures. Such 2D charge conduction mechanism and high ae values inside an interlocked multilayered assembly containing graphene-based nanocomposites are of great interest for organic devices and functionalization of interfaces.2849111FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESPCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQCOORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPES2014/25979-22014/03691-7Sem informaçãoSem informaçã

    Microfluidic electronic tongue

    No full text
    Fast, simple inspection of liquids such as coffee, wine and body fluids is highly desirable for food, beverage and clinical analysis. Electronic tongues are sensors capable of performing quantitative and qualitative measurements in liquid substances using multivariate analysis tools. Earlier attempts to fulfil this task using only a few drops (microliters) of sample did not yield rational results with non-electrolytes e.g. sucrose (sweetness). We report here the fabrication and testing of a microfluidic e-tongue able to distinguish electrolytes from non-electrolytes, covering also the basic tastes relevant to human gustative perception. The sensitivity of our device is mainly attributed to the ultrathin nature of an array formed by non-selective sensing units. The electronic tongue is composed of an array of sensing units designed with a microchannel stamped in a poly( dimethylsiloxane) (PDMS) matrix and sealed onto gold interdigitated electrodes (IDEs). The IDEs are then coated in situ with a 5-bilayer film deposited by the layer-by-layer (LbL) technique. The cationic layer is derived from polyallylamine chloride (PAH). The anionic layer is either poly(3,4-ethylenedioxythiophene)-poly( styrenesulfonate) PEDOT:PSS, polypyrrole or nickel tetrasulfonated phthalocyanine. When compared to a conventional electronic tongue our system is three times faster and requires only microliters of sample. Applying Principal Component Analysis to the data yields a high correlation for all substances tested. This microfluidic e-tongue has the potential for producing low-cost, easily integrated, multi-functional sensor for food, beverages, in addition to clinical and environmental applications.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Poole-Frenkel emission on functionalized, multilayered-packed reduced graphene oxide nanoplatelets

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORThe unique electronic, mechanical and optical properties of graphene make it a remarkable 2D material, widely explored in a plethora of applications. However, graphene zero-bandgap and the production of defect-free pristine graphene in large areas still limit some applications. To circumvent these issues, graphene-derived 2D materials have arisen as attractive candidates for low-dimensional systems, which requires a better comprehension of their properties. Here, we report a detailed investigation of the conduction mechanisms of two functionalized reduced graphene oxides (rGOs) nanoplatelets, named GPAH and GPSS. The functionalized rGO nanoplatelets were bottom-up assembled via the layer-by-layer technique, enabling molecular-level thickness control of nanostructures with well-defined composition and structure. For the reported multilayered GPAH/GPSS films the charge carriers followed Mott's law, presenting a typical conduction behavior of 2D systems described by the Poole-Frenkel model. The multilayered GPAH/GPSS nanostructure presented a conductivity of 10(-4)S cm(-1), optical bandgap of similar to 3.3 eV and a relative dielectric permittivity (epsilon(r)) of 6.4. Temperature-dependent I-V measurements indicated a strong variation of er below the critical temperature (T-C = 237 K), associated with a high dipole reorientation in the formed GPAH/GPSS nanostructure. All these characteristics make the GPAH/GPSS nanocomposite attractive for graphene-oriented applications, such as electronic devices.295019FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIOR2014/03691-72014/25979-2sem informaçãosem informaçã
    corecore