136 research outputs found

    Experimental Test of an Event-Based Corpuscular Model Modification as an Alternative to Quantum Mechanics

    Full text link
    We present the first experimental test that distinguishes between an event-based corpuscular model (EBCM) [H. De Raedt et al.: J. Comput. Theor. Nanosci. 8 (2011) 1052] of the interaction of photons with matter and quantum mechanics. The test looks at the interference that results as a single photon passes through a Mach-Zehnder interferometer [H. De Raedt et al.: J. Phys. Soc. Jpn. 74 (2005) 16]. The experimental results, obtained with a low-noise single-photon source [G. Brida et al.: Opt. Expr. 19 (2011) 1484], agree with the predictions of standard quantum mechanics with a reduced χ2\chi^2 of 0.98 and falsify the EBCM with a reduced χ2\chi^2 of greater than 20

    On the reconstruction of diagonal elements of density matrix of quantum optical states by on/off detectors

    Get PDF
    We discuss a scheme for reconstructing experimentally the diagonal elements of the density matrix of quantum optical states. Applications to PDC heralded photons, multi-thermal and attenuated coherent states are illustrated and discussed in some details.Comment: 10 pages, presented at Palermo "TQMFA2005" Conference. To appear on "Open Systems & Information Dynamics" (2006

    Optimal estimation of entanglement and discord in two-qubit states

    Get PDF
    Recently, the fast development of quantum technologies led to the need for tools allowing the characterization of quantum resources. In particular, the ability to estimate non-classical aspects, e.g. entanglement and quantum discord, in two-qubit systems, is relevant to optimise the performance of quantum information processes. Here we present an experiment in which the amount of entanglement and discord are measured exploiting different estimators. Among them, some will prove to be optimal, i.e., able to reach the ultimate precision bound allowed by quantum mechanics. These estimation techniques have been tested with a specific family of states ranging from nearly pure Bell states to completely mixed states. This work represents a significant step in the development of reliable metrological tools for quantum technologies

    Improved implementation of nonclassicality test for a single particle

    Full text link
    Recently a test of nonclassicality for a single qubit was proposed [R. Alicki and N. Van Ryn, J. Phys. A: Math. Theor. 41, 062001 (2008)]. We present an optimized experimental realization of this test leading to a 46 standard deviation violation of classicality. This factor of 5 improvement over our previous result was achieved by moving from the infrared to the visible where we can take advantage of higher efficiency and lower noise photon detectors.Comment: 4 pages, 1 figur

    Anomalous Weak Values and the Violation of a Multiple-measurement Leggett-Garg Inequality

    Get PDF
    Quantum mechanics presents peculiar properties that, on the one hand, have been the subject of several theoretical and experimental studies about its very foundations and, on the other hand, provide tools for developing new technologies, the so-called quantum technologies. The nonclassicality pointed out by Leggett-Garg inequalities has represented, with Bell inequalities, one of the most investigated subject. In this letter we study the connection of Leggett-Garg inequalities with a new emerging field of quantum measurement, the weak values. In particular, we perform an experimental study of the four-time correlators Legget-Garg test, by exploiting single and sequential weak measurements performed on heralded single photons. We show violation of a four-parameters Leggett-Garg inequality in different experimental conditions, demonstrating an interesting connection between Leggett-Garg inequality violation and anomalous weak values

    Temporal teleportation with pseudo-density operators: how dynamics emerges from temporal entanglement

    Get PDF
    We show that, by utilising temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time-evolution. Furthermore, we note that the possibility of this protocol stems from the strict formal correspondence between spatial and temporal entanglement in quantum theory. We proceed to demonstrate experimentally this correspondence, by showing a multipartite violation of generalised temporal and spatial Bell inequalities and verifying agreement with theoretical predictions to a high degree of accuracy, in high-quality photon qubits.Comment: preprin

    Temporal teleportation with pseudo-density operators: How dynamics emerges from temporal entanglement

    Get PDF
    open8We show that, by using temporal quantum correlations as expressed by pseudo-density operators (PDOs), it is possible to recover formally the standard quantum dynamical evolution as a sequence of teleportations in time. We demonstrate that any completely positive evolution can be formally reconstructed by teleportation with different temporally correlated states. This provides a different interpretation of maximally correlated PDOs, as resources to induce quantum time evolution. Furthermore, we note that the possibility of this protocol stems from the strict formal correspondence between spatial and temporal entanglement in quantum theory. We proceed to demonstrate experimentally this correspondence, by showing a multipartite violation of generalized temporal and spatial Bell inequalities and verifying agreement with theoretical predictions to a high degree of accuracy, in high-quality photon qubits.openMarletto, C; Vedral, V; Virzi', S; Avella, A; Piacentini, F; Gramegna, M; Degiovanni, IP; Genovese, MMarletto, C; Vedral, V; Virzi', S; Avella, A; Piacentini, F; Gramegna, M; Degiovanni, Ip; Genovese,

    Mode structure reconstruction by detected and undetected light

    Full text link
    We introduce a novel technique for the reconstruction of multimode optical fields, based on simultaneously exploiting both the generalized Glauber's KthK^{th}-order correlation function g(K)g^{(K)} and a recently proposed anti-correlation function (dubbed θ(K)\theta^{(K)}) which is resilient to Poissonian noise. We experimentally demonstrate that this method yields mode reconstructions with higher fidelity with respect to those obtained with reconstruction methods based only on g(K)g^{(K)}'s, even requiring less "a priori" information. The reliability and versatility of our technique make it suitable for a widespread use in real applications of optical quantum measurement, from quantum information to quantum metrology, especially when one needs to characterize ensembles of single-photon emitters in the presence of background noise (due, for example, to residual excitation laser, stray light, or unwanted fluorescence).Comment: 11 pages, 3 figure

    Quantum characterization of superconducting photon counters

    Get PDF
    We address the quantum characterization of photon counters based on transition-edge sensors (TESs) and present the first experimental tomography of the positive operator-valued measure (POVM) of a TES. We provide the reliable tomographic reconstruction of the POVM elements up to 11 detected photons and M=100 incoming photons, demonstrating that it is a linear detector.Comment: 3 figures, NJP (to appear
    • …
    corecore