51 research outputs found

    A Policy-Driven Large Scale Ecological Restoration: Quantifying Ecosystem Services Changes in the Loess Plateau of China

    Get PDF
    As one of the key tools for regulating human-ecosystem relations, environmental conservation policies can promote ecological rehabilitation across a variety of spatiotemporal scales. However, quantifying the ecological effects of such policies at the regional level is difficult. A case study was conducted at the regional level in the ecologically vulnerable region of the Loess Plateau, China, through the use of several methods including the Universal Soil Loss Equation (USLE), hydrological modeling and multivariate analysis. An assessment of the changes over the period of 2000–2008 in four key ecosystem services was undertaken to determine the effects of the Chinese government's ecological rehabilitation initiatives implemented in 1999. These ecosystem services included water regulation, soil conservation, carbon sequestration and grain production. Significant conversions of farmland to woodland and grassland were found to have resulted in enhanced soil conservation and carbon sequestration, but decreased regional water yield under a warming and drying climate trend. The total grain production increased in spite of a significant decline in farmland acreage. These trends have been attributed to the strong socioeconomic incentives embedded in the ecological rehabilitation policy. Although some positive policy results have been achieved over the last decade, large uncertainty remains regarding long-term policy effects on the sustainability of ecological rehabilitation performance and ecosystem service enhancement. To reduce such uncertainty, this study calls for an adaptive management approach to regional ecological rehabilitation policy to be adopted, with a focus on the dynamic interactions between people and their environments in a changing world

    A Comprehensive Check of Usle-Based Soil Loss Prediction Models at the Sparacia (South Italy) Site

    No full text
    At first, in this paper a general definition of the event rainfall-runoff erosivity factor for the USLE-based models, REFe = (QR)b1(EI30)b2, in which QR is the event runoff coefficient, EI30 is the single-storm erosion index and b1 and b2 are coefficients, was introduced. The rainfall-runoff erosivity factors of the USLE (b1 = 0, b2 = 1), USLE-M (b1 = b2 = 1), USLE-MB (b1 ≠ 1, b2 = 1), USLE-MR (b1 = 1, b2 ≠ 1), USLE-MM (b1 = b2 ≠ 1) and USLE-M2 (b1 ≠ b2 ≠ 1) can be defined using REFe. Then, the different expressions of REFe were simultaneously tested against a dataset of normalized bare plot soil losses, AeN, collected at the Sparacia (south Italy) site. As expected, the poorest AeN predictions were obtained with the USLE. A distinction was made among the four power-type models since the fitting to the data was poor with the USLE-MR as compared with the other three models. Estimating two distinct exponents (one for EI30 and another for QR, USLE-M2) instead of a single exponent (USLE-MB, USLE-MR, USLE-MM) did not appreciably improve soil loss prediction. The USLE-MB and the USLE-MM were the best performing models
    • …
    corecore