10,568 research outputs found
Investigation of Northrop F-5A wing buffet intensity in transonic flight
A flight test and data processing program utilizing a Northrop F-5A aircraft instrumented to acquire buffet pressures and response data during transonic maneuvers is discussed. The data are presented in real-time format followed by spectral and statistical analyses. Also covered is a comparison of the aircraft response data with computed responses based on the measured buffet pressures
Quantum Evolution of Inhomogeneities in Curved Space
We obtain the renormalized equations of motion for matter and semi-classical
gravity in an inhomogeneous space-time. We use the functional Schrodinger
picture and a simple Gaussian approximation to analyze the time evolution of
the model, and we establish the renormalizability of this
non-perturbative approximation. We also show that the energy-momentum tensor in
this approximation is finite once we consider the usual mass and coupling
constant renormalizations, without the need of further geometrical
counter-terms.Comment: 22 page
Jets and Jet Multiplicities in High Energy Photon-Nucleon Inetraction:
We discuss the theory of jet events in high-energy photon-proton interactions
using a model which gives a good description of the data available on total
inelastic cross sections up to =210 GeV. We show how to
calculate the jet cross sections and jet multiplicities and give predictions
for these quantities for energies appropriate for experiments at the HERA
collider and for very high energy cosmic ray observations.Comment: 12 pages + 4 figs, MAD/TH/92-8, submitted to Phys. Rev. D(Rapid
Communications), figs. available on request from [email protected]
Multi-user lattice coding for the multiple-access relay channel
This paper considers the multi-antenna multiple access relay channel (MARC),
in which multiple users transmit messages to a common destination with the
assistance of a relay. In a variety of MARC settings, the dynamic decode and
forward (DDF) protocol is very useful due to its outstanding rate performance.
However, the lack of good structured codebooks so far hinders practical
applications of DDF for MARC. In this work, two classes of structured MARC
codes are proposed: 1) one-to-one relay-mapper aided multiuser lattice coding
(O-MLC), and 2) modulo-sum relay-mapper aided multiuser lattice coding
(MS-MLC). The former enjoys better rate performance, while the latter provides
more flexibility to tradeoff between the complexity of the relay mapper and the
rate performance. It is shown that, in order to approach the rate performance
achievable by an unstructured codebook with maximum-likelihood decoding, it is
crucial to use a new K-stage coset decoder for structured O-MLC, instead of the
one-stage decoder proposed in previous works. However, if O-MLC is decoded with
the one-stage decoder only, it can still achieve the optimal DDF
diversity-multiplexing gain tradeoff in the high signal-to-noise ratio regime.
As for MS-MLC, its rate performance can approach that of the O-MLC by
increasing the complexity of the modulo-sum relay-mapper. Finally, for
practical implementations of both O-MLC and MS-MLC, practical short length
lattice codes with linear mappers are designed, which facilitate efficient
lattice decoding. Simulation results show that the proposed coding schemes
outperform existing schemes in terms of outage probabilities in a variety of
channel settings.Comment: 32 pages, 5 figure
Mean field and pairing properties in the crust of neutron stars
Properties of the matter in the inner crust of a neutron star are
investigated in a Hartree-Fock plus BCS approximation employing schematic
effective forces of the type of the Skyrme forces. Special attention is paid to
differences between a homogenous and inhomogeneous description of the matter
distribution. For that purpose self-consistent Hartree Fock calculations are
performed in a spherical Wigner-Seitz cell. The results are compared to
predictions of corresponding Thomas Fermi calculations. The influence of the
shell structure on the formation of pairing correlations in inhomogeneous
matter are discussed.Comment: 11 pages, 9 figure
Intricacies of the Co spin state in SrCoIrO: an x-ray absorption and magnetic circular dichroism study
We report on a combined soft x-ray absorption and magnetic circular dichroism
(XMCD) study at the Co- on the hybrid 3/5 solid state oxide
SrCoIrO with the KNiF structure. Our data
indicate unambiguously a pure high spin state for the Co
(3) ions with a significant unquenched orbital moment
despite the sizeable elongation of the CoO octahedra. Using quantitative
model calculations based on parameters consistent with our spectra, we have
investigated the stability of this high spin state with respect to the
competing low spin and intermediate spin states.Comment: 7 pages, 4 figure
- …