400 research outputs found

    Reduction Mandibuloplasty For Facial Aesthetic Enhancement In Western Women - A Case Report

    Get PDF
    This paper reports on the case of a Western female patient with square jaw and low mandibular angle deformity who sought treatment for aesthetic facial enhancement. While face-narrowing surgical procedures are especially popular among Asian women, there seems to be a general, cross-cultural agreement that a beautiful female face should be oval and slender. Under general anesthesia, intra-oral incisions were performed bilaterally to approach the mandibular angles. After periosteal elevation, bilateral corticectomies of the mandibular rami and "V" ostectomies of the mandibular base were executed. Postoperative recovery was uneventful. Six months after surgery, the patient's face was not only rounder and gentler in the frontal view, but also showed an evident increase of the gonial angles in the profile and three-quarter views.3278178

    On the p,qp,q-binomial distribution and the Ising model

    Full text link
    A completely new approach to the Ising model in 1 to 5 dimensions is developed. We employ p,qp,q-binomial coefficients, a generalisation of the binomial coefficients, to describe the magnetisation distributions of the Ising model. For the complete graph this distribution corresponds exactly to the limit case p=qp=q. We take our investigation to the simple dd-dimensional lattices for d=1,2,3,4,5d=1,2,3,4,5 and fit p,qp,q-binomial distributions to our data, some of which are exact but most are sampled. For d=1d=1 and d=5d=5 the magnetisation distributions are remarkably well-fitted by p,qp,q-binomial distributions. For d=4d=4 we are only slightly less successful, while for d=2,3d=2,3 we see some deviations (with exceptions!) between the p,qp,q-binomial and the Ising distribution. We begin the paper by giving results on the behaviour of the p,qp,q-distribution and its moment growth exponents given a certain parameterization of p,qp,q. Since the moment exponents are known for the Ising model (or at least approximately for d=3d=3) we can predict how p,qp,q should behave and compare this to our measured p,qp,q. The results speak in favour of the p,qp,q-binomial distribution's correctness regarding their general behaviour in comparison to the Ising model. The full extent to which they correctly model the Ising distribution is not settled though.Comment: 51 pages, 23 figures, submitted to PRB on Oct 23 200

    Defining schistosomiasis hotspots based on literature and shareholder interviews

    Get PDF
    The World Health Organization (WHO) recently proposed a new operational definition which designates communities with ≥10% prevalence of Schistosoma spp. infection as a persistent hotspot, when, after at least two rounds of high-coverage annual preventive chemotherapy, there is a lack of appropriate reduction. However, inconsistencies and challenges from both biological and operational perspectives remain, making the prescriptive use of this definition difficult. Here, we present a comprehensive analysis of the use of the term 'hotspot' across schistosomiasis research over time, including both literature searches and opinions from a range of stakeholders, to assess the utility and generalisability of the new WHO definition of a persistent hotspot. Importantly, we propose an updated definition based on our analyses

    A new method to compensate impedance artefacts for Li-ion batteries with integrated micro-reference electrodes

    Full text link
    In order to measure the electrochemical characteristics of both electrodes inside Li-ion batteries, micro-reference electrodes (μREF) turned out to be very useful. However, measuring the electrochemical impedance with respect to μREF can lead to severe measurement artefacts, making a detailed analysis of the impedance spectra complicated. In the present work a new method is developed in which high-frequency measurement artefacts can be compensated. A theoretical analysis, using equivalent circuit models of the measurement setups, shows that if two different impedance measurements are averaged, the impedance contributions from the measurement leads can be completely eliminated. The theoretical analysis is validated using Li-ion batteries with seven integrated μREF, having all different impedances. The measurement results show that artefacts are dominating for high-impedance μREF in the high frequency range. However, these artefacts can be fully compensated by averaging two separate impedance measurements, as predicted by theory. This easily makes it possible to perform artefact-free impedance measurements, even at high frequencies

    Praziquantel decreases fecundity in Schistosoma mansoni adult worms that survive treatment: evidence from a laboratory life-history trade-offs selection study

    Get PDF
    Background Mass drug administration of praziquantel is the World Health Organization’s endorsed control strategy for schistosomiasis. A decade of annual treatments across sub-Saharan Africa has resulted in significant reductions of infection prevalence and intensity levels, although ‘hotspots’ remain. Repeated drug treatments place strong selective pressures on parasites, which may affect life-history traits that impact transmission dynamics. Understanding drug treatment responses and the evolution of such traits can help inform on how to minimise the risk of drug resistance developing, maximise sustainable control programme success, and improve diagnostic protocols. Methods We performed a four-generation Schistosoma mansoni praziquantel selection experiment in mice and snails. We used three S. mansoni lines: a praziquantel-resistant isolate (R), a praziquantel-susceptible isolate (S), and a co-infected line (RS), under three treatment regimens: untreated, 25 mg/kg praziquantel, or 50 mg/kg praziquantel. Life-history traits, including parasite adult-worm establishment, survival, reproduction (fecundity), and associated morbidity, were recorded in mice across all four generations. Predictor variables were tested in a series of generalized linear mixed effects models to determine which factors had a significant influence on parasite life-history traits in definitive hosts under different selection regimes. Results Praziquantel pressure significantly reduced adult-worm burdens across all generations and isolates, including within R-lines. However, previous drug treatment resulted in an increase in adult-worm establishment with increasing generation from P1 to F3. The highest worm numbers were in the co-infected RS line. Praziquantel treatment decreased adult-worm burden, but had a larger negative impact on the mean daily number of miracidia, a proxy for fecundity, across all three parasite isolates. Conclusions Our predicted cost of resistance was not supported by the traits we measured within the murine host. We did not find evidence for negative adult worm density-dependent effects on fecundity. In contrast, of the adult worms that survived treatment, even low doses of praziquantel significantly reduced adult-worm fecundity. Such reductions in worm fecundity post treatment suggest that egg - based measures of drug efficacy, such as Kato-Katz, may overestimate the short-term effect of praziquantel on adult - worm burdens. These findings have important implications for S. mansoni transmission control, diagnostic protocols, and the potential for undetected selection toward drug resistance

    A Review of Degradation Mechanisms and Recent Achievements for Ni-Rich Cathode-Based Li-Ion Batteries

    Full text link
    The growing demand for sustainable energy storage devices requires rechargeable lithium-ion batteries (LIBs) with higher specific capacity and stricter safety standards. Ni-rich layered transition metal oxides outperform other cathode materials and have attracted much attention in both academia and industry. Lithium-ion batteries composed of Ni-rich layered cathodes and graphite anodes (or Li-metal anodes) are suitable to meet the energy requirements of the next generation of rechargeable batteries. However, the instability of Ni-rich cathodes poses serious challenges to large-scale commercialization. This paper reviews various degradation processes occurring at the cathode, anode, and electrolyte in Ni-rich cathode-based LIBs. It highlights the recent achievements in developing new stabilization strategies for the various battery components in future Ni-rich cathode-based LIBs

    Determination of state-of-charge dependent diffusion coefficients and kinetic rate constants of phase changing electrode materials using physics-based models

    Full text link
    The simplified gravimetric intermittent titration technique (GITT) model, which was first proposed by Weppner and Huggins in 1977, remains a popular method to determine the solid-state diffusion coefficient (D1) and the electrochemical kinetic rate constant (k). This is despite the model having been developed on the premise of a single-slab electrode and other gross simplification which are not applicable to modern-day porous battery electrodes. Recently however, more realistic and conceptually descriptive models have emerged, which make use of the increased availability of computational power. Chief among them is the P2D model developed by Newman et al., which has been validated for various porous battery electrodes. Herein, a P2D GITT model is presented and coupled with grid search optimization to determine state-of-charge (SOC) dependent D1 and k parameters for a sodium-ion battery (SIB) cathode. Using this approach, experimental GITT steps could be well fitted and thus validated at different SOC points. This work demonstrates the first usage of the P2D GITT model coupled with optimization as an analytical method to derive and validate physically meaningful parameters. The accurate knowledge of D1 and k as a function of the SOC gives further insight into the SIB intercalation dynamics and rate capability

    A Clinical and Epidemiological Investigation of the First Reported Human Infection With the Zoonotic Parasite Trypanosoma evansi in Southeast Asia

    Get PDF
    Background. Trypanosoma is a genus of unicellular parasitic flagellate protozoa. Trypanosoma brucei species and Trypanosoma cruzi are the major agents of human trypanosomiasis; other Trypanosoma species can cause human disease, but are rare. In March 2015, a 38-year-old woman presented to a healthcare facility in southern Vietnam with fever, headache, and arthralgia. Microscopic examination of blood revealed infection with Trypanosoma. Methods. Microscopic observation, polymerase chain reaction (PCR) amplification of blood samples, and serological testing were performed to identify the infecting species. The patient's blood was screened for the trypanocidal protein apolipoprotein L1 (APOL1), and a field investigation was performed to identify the zoonotic source. Results. PCR amplification and serological testing identified the infecting species as Trypanosoma evansi. Despite relapsing 6 weeks after completing amphotericin B therapy, the patient made a complete recovery after 5 weeks of suramin. The patient was found to have 2 wild-type APOL1 alleles and a normal serum APOL1 concentration. After responsive animal sampling in the presumed location of exposure, cattle and/or buffalo were determined to be the most likely source of the infection, with 14 of 30 (47%) animal blood samples testing PCR positive for T. evansi. Conclusions. We report the first laboratory-confirmed case of T. evansi in a previously healthy individual without APOL1 deficiency, potentially contracted via a wound while butchering raw beef, and successfully treated with suramin. A linked epidemiological investigation revealed widespread and previously unidentified burden of T. evansi in local cattle, highlighting the need for surveillance of this infection in animals and the possibility of further human cases

    A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries

    Full text link
    In order to guarantee safe and proper use of Lithium-ion batteries during operation, an accurate estimate of the battery temperature is of paramount importance. Electrochemical Impedance Spectroscopy (EIS) can be used to estimate the battery temperature and several EIS-based temperature estimation methods have been proposed in the literature. In this paper, we argue that all existing EIS-based methods implicitly distinguish two steps: experiment design and parameter estimation. The former step consists of choosing the excitation frequency and the latter step consists of estimating the battery temperature based on the measured impedance resulting from the chosen excitation. By distinguishing these steps and by performing Monte-Carlo simulations, all existing methods are compared in terms of accuracy (i.e., mean-square error) of the temperature estimate. The results of the comparison show that, due to different choices in the two steps, significant differences in accuracy of the estimate exist. More importantly, by jointly selecting the parameters of the experiment-design and parameter-estimation step, a more-accurate temperature estimate can be obtained. In case of an unknown State-of-Charge, this novel method estimates the temperature with an average absolute bias of 0.4. °C and an average standard deviation of 0.7. °C using a single impedance measurement for the battery under consideration
    • …
    corecore