374 research outputs found

    Modelling governance for a successful electricity sector decarbonisation

    Get PDF
    Early and deep electricity decarbonisation is critical to achieve the overall energy transition target of net-zero emissions by 2050. This paper extends an electricity agent based model to capture the inter-dependence of consistent governance with underpinning societal pressure and resultant investment strategies. Results show only with the strongest level of governance – reflected in the range of national/local policy mechanisms used, and their strength/timing when interim targets are met/missed – can near-zero electricity emissions be met well before 2050. Strong governance can also ensure a stable electricity system, with consistent policies mitigating the intensity of any investment cycles. Strong governance entails higher capital investments, but these can deliver lower electricity prices in the long-term. And strong governance means that a successful electricity decarbonisation does not need to be built solely on existing incumbents, but also via local cooperatives to aggregate household financing and demand side management. However, with inconsistent governance, a vicious cycle ensues with a weak rationale to enact ambitious policies at both the local and national levels, significant inertia in new electricity investments, and hence “failure” scenarios of decarbonisation. This challenges the prior findings of optimistic achievement of electricity decarbonisation scenarios by standard techno-economic optimisation models

    The influences of non-optimal investments on the scale-up of smart local energy systems in the UK electricity market

    Get PDF
    Rapid and deep decarbonisation of electricity systems is critical in many pathways to meet net-zero emissions by 2050. Smart local energy systems (SLES) have been touted as key for both a rapid scale-up of renewable electricity and flexibility for stability in decarbonised electricity systems. A novel agent-based model – incorporating local investor and governance agents, improved temporal resolution, and demand-side flexibility – was used to investigate strategic decision making in the scale-up of SLES. From the perspective of this model, key modelling insights include: SLES investors, initially supported by local governments, can successfully boost the uptake of renewable energy up to 80% of total generation; SLES scale-up significantly erodes the market share and profitability of incumbent utilities, however national level agents are still key for capital-intensive low carbon plants; Demand-side response facilitates balancing electricity supply and demand, but it can result in non-optimal policy agents postponing required incentives for heterogeneous investor agents to build new low carbon plants; National carbon prices (in conjunction with local SLES and technology support mechanisms) are needed to maintain overall system stability. Therefore, understanding the critical role of non-optimal investor decision making is key to fully understand the drivers and implications of a rapid scale-up of SLES

    Incorporating social mechanisms in energy decarbonisation modelling

    Get PDF
    The achievement of national pledges that are compatible with the Paris Agreements warming limit of 1.5C is a massive challenge, as it requires not only an acceleration of technological innovation, but also a socio-economic and cultural transformation. Reducing uncertainties demands a better integration of behavioural evolutions in models exploring future energy pathways, including non-monetary barriers and drivers to technology diffusion. This study provides suggestions on incorporating social mechanisms of change such as resistance to change and the diffusion of environmental values into a UK-focused probabilistic energy system model, with a focus on people's attitudes towards residential heating technologies. We also offer a comprehensive literature review on interdisciplinary energy transitions modelling and exploratory scenarios embedding climate risks perceptions. We argue that efficient policy-making to meeting net-zero emissions targets must fully embrace whole-system approaches, support the more constrained segments of society, and account for interconnected socio-political factors

    Non equilibrium effects in fragmentation

    Get PDF
    We study, using molecular dynamics techniques, how boundary conditions affect the process of fragmentation of finite, highly excited, Lennard-Jones systems. We analyze the behavior of the caloric curves (CC), the associated thermal response functions (TRF) and cluster mass distributions for constrained and unconstrained hot drops. It is shown that the resulting CC's for the constrained case differ from the one in the unconstrained case, mainly in the presence of a ``vapor branch''. This branch is absent in the free expanding case even at high energies . This effect is traced to the role played by the collective expansion motion. On the other hand, we found that the recently proposed characteristic features of a first order phase transition taking place in a finite isolated system, i.e. abnormally large kinetic energy fluctuations and a negative branch in the TRF, are present for the constrained (dilute) as well the unconstrained case. The microscopic origin of this behavior is also analyzed.Comment: 21 pages, 11 figure

    Retinal Vascular Tortuosity and Diameter Associations with Adiposity and Components of Body Composition.

    Get PDF
    OBJECTIVE: The aim of this study was to assess whether adiposity or body composition relates to microvascular characteristics of the retina, indicative of cardiometabolic function. METHODS: A fully automated QUARTZ software processed retinal images from 68,550 UK Biobank participants (aged 40-69 years). Differences in retinal vessel diameter and tortuosity with body composition measures from the Tanita analyzer were obtained by using multilevel regression analyses adjusted for age, sex, ethnicity, clinic, smoking, and Townsend deprivation index. RESULTS: Venular tortuosity and diameter increased by approximately 2% (P < 10-300 ) and 0.6 μm (P < 10-6 ), respectively, per SD increase in BMI, waist circumference index, waist-hip ratio, total body fat mass index, and fat-free mass index (FFMI). Venular associations with adiposity persisted after adjustment for FFMI, whereas associations with FFMI were weakened by FMI adjustment. Arteriolar diameter (not tortuosity) narrowing with FFMI was independent of adiposity (-0.6 μm; -0.7 to -0.4 μm per SD increment of FFMI), while adiposity associations with arteriolar diameter were largely nonsignificant after adjustment for FFMI. CONCLUSIONS: This demonstrates, on an unprecedented scale, that venular tortuosity and diameter are more strongly associated with adiposity, whereas arteriolar diameter relates more strongly to fat-free mass. Different attributes of the retinal microvasculature may reflect distinct roles of body composition and fatness on the cardiometabolic system

    Associations of Retinal Microvascular Diameters and Tortuosity With Blood Pressure and Arterial Stiffness: United Kingdom Biobank.

    Get PDF
    To examine the baseline associations of retinal vessel morphometry with blood pressure (BP) and arterial stiffness in United Kingdom Biobank. The United Kingdom Biobank included 68 550 participants aged 40 to 69 years who underwent nonmydriatic retinal imaging, BP, and arterial stiffness index assessment. A fully automated image analysis program (QUARTZ [Quantitative Analysis of Retinal Vessel Topology and Size]) provided measures of retinal vessel diameter and tortuosity. The associations between retinal vessel morphology and cardiovascular disease risk factors/outcomes were examined using multilevel linear regression to provide absolute differences in vessel diameter and percentage differences in tortuosity (allowing within person clustering), adjusted for age, sex, ethnicity, clinic, body mass index, smoking, and deprivation index. Greater arteriolar tortuosity was associated with higher systolic BP (relative increase, 1.2%; 95% CI, 0.9; 1.4% per 10 mmHg), higher mean arterial pressure, 1.3%; 0.9, 1.7% per 10 mmHg, and higher pulse pressure (PP, 1.8%; 1.4; 2.2% per 10 mmHg). Narrower arterioles were associated with higher systolic BP (-0.9 µm; -0.94, -0.87 µm per 10 mmHg), mean arterial pressure (-1.5 µm; -1.5, -1.5 µm per 10 mmHg), PP (-0.7 µm; -0.8, -0.7 µm per 10 mmHg), and arterial stiffness index (-0.12 µm; -0.14, -0.09 µm per ms/m2). Associations were in the same direction but marginally weaker for venular tortuosity and diameter. This study assessing the retinal microvasculature at scale has shown clear associations between retinal vessel morphometry, BP, and arterial stiffness index. These observations further our understanding of the preclinical disease processes and interplay between microvascular and macrovascular disease

    A Quasi-Classical Model of Intermediate Velocity Particle Production in Asymmetric Heavy Ion Reactions

    Full text link
    The particle emission at intermediate velocities in mass asymmetric reactions is studied within the framework of classical molecular dynamics. Two reactions in the Fermi energy domain were modelized, 58^{58}Ni+C and 58^{58}Ni+Au at 34.5 MeV/nucleon. The availability of microscopic correlations at all times allowed a detailed study of the fragment formation process. Special attention was paid to the physical origin of fragments and emission timescales, which allowed us to disentangle the different processes involved in the mid-rapidity particle production. Consequently, a clear distinction between a prompt pre- equilibrium emission and a delayed aligned asymmetric breakup of the heavier partner of the reaction was achieved.Comment: 8 pages, 7 figures. Final version: figures were redesigned, and a new section discussing the role of Coulomb in IMF production was include

    Visualizing size-dependent deformation mechanism transition in Sn

    Get PDF
    Displacive deformation via dislocation slip and deformation twinning usually plays a dominant role in the plasticity of crystalline solids at room temperature. Here we report in situ quantitative transmission electron microscope deformation tests of single crystal Sn samples. We found that when the sample size was reduced from 450 nm down to 130 nm, diffusional deformation replaces displacive plasticity as the dominant deformation mechanism at room temperature. At the same time, the strength-size relationship changed from “smaller is stronger” to “smaller is much weaker”. The effective surface diffusivity calculated based on our experimental data matches well with that reported in literature for boundary diffusion. The observed change in the deformation mode arises from the sample size-dependent competition between the Hall-Petch-like strengthening of displacive processes and Coble diffusion softening processes. Our findings have important implications for the stability and reliability of nanoscale devices such as metallic nanogaps.National Science Foundation (U.S.) (CMMI-0728069)National Science Foundation (U.S.) (DMR-1008104)National Science Foundation (U.S.) (DMR-1120901)United States. Air Force Office of Scientific Research (FA9550-08-1-0325

    Mortality in GOLD stages of COPD and its dependence on symptoms of chronic bronchitis

    Get PDF
    BACKGROUND: The GOLD classification of COPD severity introduces a stage 0 (at risk) comprising individuals with productive cough and normal lung function. The aims of this study were to investigate total mortality risks in GOLD stages 0–4 with special focus on stage 0, and furthermore to assess the influence of symptoms of chronic bronchitis on mortality risks in GOLD stages 1–4. METHOD: Between 1974 and 1992, a total of 22 044 middle-aged individuals participated in a health screening, which included a spirometry as well as recording of respiratory symptoms and smoking habits. Individuals with comorbidity at baseline (diabetes, stroke, cancer, angina pectoris, or heart infarction) were excluded from the analyses. Hazard ratios (HR 95% CI) of total mortality were analyzed in GOLD stages 0–4 with individuals with normal lung function and without symptoms of chronic bronchitis as a reference group. HR:s in smoking individuals with symptoms of chronic bronchitis within the stages 1–4 were calculated with individuals with the same GOLD stage but without symptoms of chronic bronchitis as reference. RESULTS: The number of deaths was 3674 for men and 832 for women based on 352 324 and 150 050 person-years respectively. The proportion of smokers among men was 50% and among women 40%. Self reported comorbidity was present in 4.6% of the men and 6.6% of the women. Among smoking men, Stage 0 was associated with an increased mortality risk, HR; 1.65 (1.32–2.08), of similar magnitude as in stage 2, HR; 1.41 (1.31–1.70). The hazard ratio in stage 0 was significantly higher than in stage 1 HR; 1.13 (0.98–1.29). Among male smokers with stage 1; HR: 2.04 (1.34–3.11), and among female smokers with stage 2 disease; HR: 3.16 (1.38–7.23), increased HR:s were found in individuals with symptoms of chronic bronchitis as compared to those without symptoms of chronic bronchitis. CONCLUSION: Symptoms fulfilling the definition of chronic bronchitis were associated with an increased mortality risk among male smokers with normal pulmonary function (stage 0) and also with an increased risk of death among smoking individuals with mild to moderate COPD (stage 1 and 2)
    • …
    corecore