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A B S T R A C T   

Rapid and deep decarbonisation of electricity systems is critical in many pathways to meet net-zero emissions by 
2050. Smart local energy systems (SLES) have been touted as key for both a rapid scale-up of renewable elec
tricity and flexibility for stability in decarbonised electricity systems. A novel agent-based model – incorporating 
local investor and governance agents, improved temporal resolution, and demand-side flexibility – was used to 
investigate strategic decision making in the scale-up of SLES. From the perspective of this model, key modelling 
insights include: SLES investors, initially supported by local governments, can successfully boost the uptake of 
renewable energy up to 80% of total generation; SLES scale-up significantly erodes the market share and prof
itability of incumbent utilities, however national level agents are still key for capital-intensive low carbon plants; 
Demand-side response facilitates balancing electricity supply and demand, but it can result in non-optimal policy 
agents postponing required incentives for heterogeneous investor agents to build new low carbon plants; Na
tional carbon prices (in conjunction with local SLES and technology support mechanisms) are needed to maintain 
overall system stability. Therefore, understanding the critical role of non-optimal investor decision making is key 
to fully understand the drivers and implications of a rapid scale-up of SLES.   

1. Introduction 

1.1. Importance of electricity decarbonisation and smart local energy 
systems 

To achieve the goals of the Paris Agreement (UNFCCC, 2015), global 
energy systems should be deeply decarbonised in the coming decades to 
reach net-zero greenhouse gas (GHG) emissions by 2050 (IPCC, 2018). 
Many countries have thus set and legislated ambitious long-term GHG 
emissions reduction targets to align with the Paris Agreement. For 
instance, the European Union, France, Germany, UK, and New Zealand, 
have adopted net-zero targets by 2050 (European Commission, 2022). 

For two reasons, the early and rapid reduction in CO2 emissions from 
the electricity sector is the foremost measure to enable the pathway to 
net-zero GHG emissions from the energy system. First, electricity gen
eration is the largest global emission source (International Renewable 
Energy Agency, 2019), accounting for about 32% of total CO2 emissions 
in 2018, which is mirrored by its importance at national level. For 
instance, electricity generation contributed about 27% and 23% of total 
GHG emissions in the United States (US EPA, 2020) and the UK (BEIS, 

2020) respectively in 2018. Second, electrification is a key strategy to 
reduce GHG emissions in the end-use sectors (e.g. the residential and 
transport sectors) (CCC, 2019; IPCC, 2018). With the sharp increase in 
electricity consumption due to the extensive electrification of those 
sectors, low-carbon electricity is even more pressing for the success of 
achieving net-zero targets. Hence the full decarbonisation of the global 
electricity sector is essential to limit temperature increase to 1.5◦C 
across all pathways with a wide range of socio-economic and technology 
assumptions (IPCC, 2018). This pivotal role is also seen at the national 
level. For example, the Committee on Climate Change (CCC) estimates 
that the carbon intensity of the UK power sector needs to drop below 100 
gCO2/kWh by 2030, followed by full decarbonisation by 2050 (CCC, 
2015a). 

Low or zero carbon technologies must be deployed at scale to 
dramatically decarbonise the electricity sector. With the sharp drop in 
costs of variable renewable energy (VRE) (i.e. solar PV, onshore wind, 
and offshore wind) in recent years (International Energy Agency, 2017), 
the introduction of VRE is thus crucial to transform the electricity sector 
cost-effectively. According to National Grid (2021), to achieve the UK’s 
net-zero target with minimum total costs by 2050, all four pathways 
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considered have VRE contributing over 78% of total electricity genera
tion in the UK. Such a high share of intermittent VRE (combined with 
less flexible nuclear power) brings new challenges in balancing elec
tricity supply and demand. Hence, system flexibility measures (e.g. 
demand-side response (DSR)) also need to be widely adopted to ensure 
system stability in the future low-carbon electricity systems (CCC, 
2015b). 

Smart local energy systems (SLES) that comprise renewable energy 
(i.e. VRE and biomass plants) and system flexibility measures in sub- 
national regions (Morstyn et al., 2020) have been seen as a potential 
approach to scaling-up the adoption of renewable energy for electricity 
provision (Ford et al., 2019). SLES is touted to expand and diversify the 
energy investor base, and hence increase the flow of finance into re
newables and other transition technologies (Braunholtz-Speight et al., 
2020; McInerney and Bunn, 2019). Local investors in SLES might 
include municipal utilities and households. These investors can have a 
lower investment risk when investing in decentralised renewable energy 
(Wilson et al., 2020). Additionally, SLES could maximise the use of 
renewable energy since households are more likely to engage with DSR 
schemes as system flexibility measures, such as smart appliances and 
smart heating controls (Carmichael et al., 2018). SLES can thus poten
tially accelerate the energy transition towards a low-carbon future. 

1.2. Contribution of this paper 

The scale-up of SLES heavily relies on the investment decisions of 
heterogeneous investors both at national and sub-national levels (Ford 
et al., 2019), such as investments in decentralised renewable energy 
(Kraan et al., 2018). This is especially true in liberalised electricity 
markets (e.g. the UK’s electricity market (Grubb and Newbery, 2018)). 
Investors have limited ability to gather and process relevant information 
so that they primarily seek satisfactory rather than optimal solutions 
(Hall et al., 2017). These investors hence have varied expectations on 
the future investment environment – such as fuel prices, technology 
costs, and electricity demands – and also exhibit different investment 
strategies and risk-taking tendencies (Kraan et al., 2018). Consequently, 
with their limited foresight of the future electricity market, investors 
employ strategies that are “good-enough” and “acceptable” (i.e. 
non-optimal) in their investment decisions (Barazza and Strachan, 
2020a; Chappin et al., 2017). 

However, investors’ heterogeneity and non-optimal decision-making 
strategies are too complicated to be represented in most energy system 
models, such as partial equilibrium optimisation models (Daly and Fais, 
2014), that assume a homogeneous system planner with perfect market 
foresight (Barazza and Strachan, 2020b). Agent-based models (ABM), on 
the other hand, that simulate multiple agents with different behaviours 
to interact with one another and the environment, are ideal for repre
senting market players’ complicated investment behaviours in liberal
ised electricity markets (Ringler et al., 2016). Several agent-based 
models (ABMs), such as EMLab (Chappin et al., 2017) and 
BRAIN-Energy (Barazza and Strachan, 2020b), have been developed to 
gain insights into the role of market players in the decarbonisation of 
electricity systems. Nonetheless, those past studies only focused on in
vestment decisions of national investors, such as incumbent utilities, in 
national electricity markets without considering local investors and 
SLES. 

This study thus extends the BRAIN-Energy model (Barazza et al., 
2020), an ABM for electricity system investments, to explore how the 
scale-up of SLES can influence the decarbonisation of the electricity 
sector to gain new policy and investment insights, considering 
non-optimal investment behaviours of heterogeneous market players. 
Unlike previous studies, this study considers both national (e.g. 
incumbent utilities) and local investors (e.g. municipal utilities and 
households). To better represent SLES, the temporal and spatial reso
lutions of the model have also been further refined, along with the 
incorporation of DSR capabilities to evaluate system flexibility 

improvement. The UK’s electricity market, a typical liberalised elec
tricity market, is adopted as the study case. 

Therefore, this study’s primary contributions cover the following 
three aspects in an integrated way. First, we have improved an (energy) 
ABM by having significantly more diverse agents – notably adding local 
investors and policymakers to national players. Then, second, we discuss 
how there is a lack (compared to other model types) of ABMs being 
applied to energy transition issues (policy design and investment) and 
that ABMs have significant advantages over usual optimisation model
ling approaches, including a range of decision-making criteria, learning/ 
responding to other strategies and having imperfect views of future 
trends/drivers. Finally third, the use of an electricity ABM, therefore, 
allows us to provide new policy and investment insights, especially 
related to smart local energy systems. 

This paper is structured as follows: Section 2 reviews the literature on 
the decarbonisation of the electricity sector using both optimisation 
models and ABMs. Section 3 describes the BRAIN-Energy model, 
including the extensions to incorporate local investors and SLES uptake. 
The results of four scenarios are discussed to reveal the influences of the 
scale-up of SLES in Section 4. Finally, Section 5 draws out the main 
conclusions from the study. 

2. Literature review 

2.1. Energy system modelling for long-term decarbonisation 

Conventional equilibrium and optimisation energy system models 
have long been the main tool to study the decarbonisation of the energy 
sector and have been used as the main decision support tools for energy 
policy (Trutnevyte, 2016). Because of their mathematical precision and 
high level of technological detail, such models have focused on the 
techno-economic details of the energy sector, exploring the full range of 
technological pathways for future energy systems, or providing detailed 
spatial and temporal resolution in balancing electricity demand and 
supply in the electricity sector (Zeyringer et al., 2018). However, energy 
system optimisation models are weaker in addressing the complexity 
and non-linearity of the energy system long-term low-carbon transition 
(Bale et al., 2015) while more progress has been made to model agent 
heterogeneity and non-optimal choices in other fields (Bilbiie, 2020; 
Farhi and Werning, 2019). Specific criticisms include aggregating 
decision-makers, assuming these to act in a rational and 
profit-maximising way (Hoekstra et al., 2017), and not capturing their 
interactions. As a result, such models poorly represent a real system 
made of heterogeneous agents, which have limited capability to gather 
and process essential information to support decision-making (e.g. 
imperfect foresight) and rely on habits and past-experiences in their 
investment choices, given their limited foresight of the future (Keppo 
and Strubegger, 2010). This makes real-world agents’ choices 
non-optimal, entangled with other agents’ choices and path-dependent, 
which conventional energy models are not able to capture (Mercure 
et al., 2016). 

However, it is key to represent heterogeneous actors especially when 
studying the development of SLES, which involves new types of actors 
and investors such as municipal utilities and local authorities (Busch 
et al., 2017). Local actors have different and broader motivations for 
investing in energy infrastructure compared to incumbent actors in the 
energy sector (Seyfang et al., 2013) including on social and environ
mental outcomes besides economic ones when investing in new energy 
infrastructure (Foxon et al., 2015). 

2.2. Agent-based modelling for long-term decarbonisation of the power 
sector 

ABMs are a suitable modelling approach to deal with the increasing 
complexity and non-linearity of the energy sector’s long-term decar
bonisation (Bale et al., 2015). ABMs are bottom-up simulation models 
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(Tesfatsion, 2006), where agents are the main unit of analysis. In ABMs 
agents can be boundedly rational, with interactions with one another 
and path-dependent behaviour, and their heterogeneous decision rules 
and interactions give rise to a system’s emergent properties. ABMs thus 
make it possible to model the complexity inherent in agents’ 
decision-making process as it is the real world (Ma and Nakamori, 
2009), including co-evolution in the energy system’s long-term decar
bonisation. ABMs can represent future diversity of investors (and 
governance) in the energy system (Hansen et al., 2019), a key element to 
study local investments in the scale-up of SLES (Busch et al., 2017). 

Given these distinctive advantages, the application of ABMs to study 
the energy sector’s decarbonisation has increased in recent years 
(Hansen et al., 2019). ABM studies of the electricity sector focusing on 
the supply side mainly concentrate on national electricity producers as 
key agents, and study a stylised electricity sector (Kraan et al., 2018). 
Socio-technical ABMs – e.g., of the long-term decarbonisation pathways 
of the German electricity sector (Deissenroth et al., 2017) also focus on 
national electricity generators. 

A key electricity decarbonisation ABM has been EMLab (Chappin 
et al., 2017), which has been used to analyse the long-term decarbon
isation of two interconnected European electricity markets as a result of 
national electricity generators’ investments under different policy con
ditions (Richstein et al., 2014). Extensions of the EMLab model have 
been used to analyse the impacts on social welfare of renewable energy 
support schemes (Iychettira et al., 2017), to explore the need for elec
tricity storage and other flexibility options in an electricity market with 
a capacity market (Khan et al., 2018), and finally to study the impacts of 
a capacity market and flexibility options on the electricity sector’s 
long-term decarbonisation (Bhagwat et al., 2016). 

Another key electricity decarbonisation ABM has been BRAIN- 
Energy which has a greater focus on the heterogeneity of agents and 
their non-optimal investment behaviours and myopic strategies (Bar
azza and Strachan, 2020b), and on capturing the co-evolutionary dy
namics between the market players’ investment strategies and the 
institutional and policy dimensions (Barazza and Strachan, 2020a). 

Many past ABM studies also oversimplified the necessary operational 
aspects of the electricity systems – including diurnal patterns and de
mand responses – that are needed for a balanced modelling approach 
that gives useable insights to policy and decision makers (Li and Stra
chan, 2019). 

2.3. Agent-based modelling for smart local energy systems 

The incorporation of SLES aspects into ABMs has been much less 
developed (Ringler et al., 2016), with work just starting on incorpo
rating aspects such as distributed generation, demand response, and 
how prosumers in local markets integrate in centralised markets. 
Exploratory work has studied residential agents, including their tech
nology adoption choices (Robinson and Rai, 2015), the role of 
communication and imitation (Palmer et al., 2015), and assessment of 
storage-based demand response (Zheng et al., 2014). A further ABM 
study explores the development of district heating focusing on the 
governance barriers which heterogeneous local actors with diverse 
motivations and capabilities face (Busch et al., 2017). However, the role 
of local actors in the development of SLES for the transition to a low 
carbon economy still remains largely overlooked in ABM studies (Foxon 
et al., 2015). 

3. Modelling methodology 

3.1. Model overview and technical operations 

BRAIN-Energy is an ABM of electricity generation and investment 
(Barazza and Strachan, 2020b), with a detailed representation of agent 
behaviour and interactions. The model’s yearly simulation procedure 
over the modelling horizon is briefly explained in Appendix A. In the 

following, we only focus on extensions that are relevant to local in
vestments and SLES for conciseness. For more detailed information, 
please refer to the model documentation (Barazza et al., 2020). 

To better model SLES, it has recently been extended as regards to its 
temporal resolution, improved depiction of sub-national regions, esti
mation of future electricity demand, local investors and their strategies 
(see section 3.2), and finally demand-side flexibility (section 3.4). 

BRAIN-Energy is calibrated to 2012 as a base year (this allows to 
validate the model against historical data) and proceeds to 2050. The 
temporal resolution (Table 1) has been refined to eight time-slices in a 
year (i.e. 4 time-slices in a typical day in two seasons), based on the 
temporal representation of the UK TIMES model, a key whole energy 
system model supporting policy-making in the UK (Daly and Fais, 2014). 
Electricity loads at the evening peak time-slice are scaled up by a factor 
to reflect possible fluctuations of electricity demand on extreme days. 

As regards to the spatial depiction, BRAIN-Energy offers a stylised 
representation of the UK electricity market, which has been divided into 
three regions based on their different renewable energy potential and 
governance structures. The three regions are London (with a dense 
population, high PV potential and mayoral powers), Scotland (with high 
potentials for onshore and offshore wind power and an executive gov
ernment), and the rest of UK to allow further diffusion of renewable 
energy technologies. 

The estimation of future national electricity demand has been 
updated to reflect the results of the UK TIMES model (Daly and Fais, 
2014) for a scenario which achieves the net-zero GHG emission target by 
2050. National electricity demand is allocated to the three regions based 
on historical trends and official projections. The details of the allocation 
and technical operations of the power market can be found in the model 
documentation (Barazza et al., 2020). 

3.2. Agents 

Agents and their strategies are at the core of BRAIN-Energy. There 
are two types of agents in BRAIN-Energy: (1) investor agents and (2) 
policy agents. 

Investor agents can be national (incumbent utilities and new- 
entrants) and local (municipal utilities and households). Investors are 
heterogeneous based on the type of organisation and on their strategies 
(Barazza and Strachan, 2020b), and all have different initial financial 
endowments and risk-return considerations (see section 3.3.1). More
over, investors are likely to adopt non-optimal decision-making strate
gies, represented by the fact that: (1) they have limited foresight of the 
future (further explained in section 3.3.1), (2) their investment choices 
are based on their own heterogeneous expectations of electricity de
mand, fuel and technology costs, and (3) own past-experience and 
imitation of other investors’ successful strategies also affect their in
vestment choices. Table 2 summarises the investors’ main strategies, 
also highlighting the number of investors of each type in BRAIN-Energy 
at the base year. Investor agents can be forced to exit the market when 
their equity becomes negative. Further details can be found in the model 
documentation (Barazza et al., 2020). 

Policy agents in BRAIN-Energy are the national government, the 
national regulator, and local government. 

The national government aims to decarbonise the UK power sector. It 
does this by using Contracts for Difference (CfD) (section 3.3.2) to 
encourage new investments in renewable energy plants, and by applying 

Table 1 
Definition of time-slices in BRAIN-Energy.  

Season Intra-day period Time represented Notes 

Winter (W) Night (N) 00:00–07:00 Lowest demand 
Day (D) 07:00–17:00 Includes morning peak 

Summer (S) Evening peak (P) 17:00–20:00 Peak demand 
Late evening (E) 20:00–00:00 Intermediate  
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a carbon price and setting emission reduction targets to further steer the 
decarbonisation of the power system (section 3.3.2). The national 
regulator agent uses a capacity market (section 3.3.2) to promote se
curity of supply by encouraging investments in gas and nuclear power 
plants. Finally, local government can implicitly subsidise technologies 
through guaranteeing they receive electricity prices set at the national 
level, as well as providing initial capital loans to allow new local en
trants to enter the market. 

3.3. Investments and market mechanisms 

3.3.1. Investments 
Investment choices come after the operational activities (electricity 

production and dispatch) of each investor. Investors in BRAIN-Energy 
decide each year whether to invest in new electricity production 
plants according to their technological preferences, highlighted in 
Table 2. Each investor agent takes investment decisions independently. 
Local investors’ investments in new local renewable energy plants are 
prioritised over proposals bided by national investors, as local investors 
are more likely to have advantages of land ownership or community 
engagement. Local investors are guaranteed to receive the national 
electricity price for selling electricity to the grid to incentivise their 
participation. 

Investors base their investment decisions on an NPV calculation (full 
details of the investment procedure are provided in (Barazza and Stra
chan, 2020b)). Non-optimality in investment decisions is reflected in the 
fact that investors have limited foresight of the future and base their 
NPV calculation on n years ahead (n is different by type of investor) (Hall 
et al., 2017), and by the fact that they use heterogeneous expectations 
about future electricity demand, fuel and technology costs in their NPV 
calculations. A further element of heterogeneity lies in the fact that 
different types of investors use different discount rate r in their NPV 
calculation, which reflects their cost of capital and have been calibrated 
based on previous studies (Helms et al., 2015; Salm, 2018; Salm et al., 
2016; Steinbach and Staniaszek, 2015). National investors such as 
incumbent utilities and local investors such as municipal utilities (for 
whom electricity generation is the main business) have a longer fore
sight n, while new-entrants (such as institutional investors) prefer to 
invest in liquid assets and hence have a shorter foresight n (Hall et al., 
2017). Moreover, while incumbent utilities are willing to take on riskier 
projects with high returns (reflected by a higher discount rate r in 
BRAIN-Energy), new-entrants prefer low-risk investments with lower 
but stable returns (hence have a lower r in BRAIN-Energy) (Helms et al., 
2015; Salm, 2018). Local households have the lowest r in BRAIN-Energy 
between 3% and 6% (Steinbach and Staniaszek, 2015). 

The investment choices of the investors give raise to the electricity 
system’s emergent properties (generation technologies, CO2 emissions 
and electricity price). These properties of the electricity system influ
ence all investors’ future investments, their revenues and market shares. 
Hence, investors are confronted with the outcomes of their own and the 
others’ investments and interact through those. Moreover, based on the 

emerging characteristics of the electricity sector, such as CO2 emissions 
and security of supply, policy agents update their policy decisions. This 
co-evolution between investment choices and the policy dimension 
within BRAIN-Energy model can be found in the previous study (Barazza 
and Strachan, 2020a). 

Investors’ investment decisions in BRAIN-Energy are also affected by 
self-learning and imitation. Self-learning is represented by the fact that 
the investment choices of the investors are affected by their past- 
performance, and are adaptive in the sense that investors learn from 
their own unsuccessful past investments. Moreover, past investments 
affect the investors’ financial performance which helps or constrains 
new investments. Imitation leads investors to learn from other investors’ 
successful investments and is a further element of interaction between 
investors in BRAIN-Energy. Further details about the self-learning and 
imitation mechanisms can be found in the model documentation (Bar
azza et al., 2020). 

3.3.2. Market mechanisms to support investments 
There are three market mechanisms in BRAIN-Energy at the national 

level which either encourage renewable energy investments (CfDs and 
the CO2 price), or support investments in gas, nuclear, and biomass 
plants for system security. 

CfD auctions in BRAIN-Energy take place every three years, to match 
the historical frequency in the UK electricity market (Grubb and 
Newbery, 2018). Auctions cover investments in onshore and offshore 
wind, biomass and PV plants, and the winners receive a fixed price 
(which is an auction’s strike price) for 15 years, providing stability to 
investors’ future revenues. 

Furthermore, the national government agent in BRAIN-Energy sets 
carbon budgets. These are defined in terms of carbon intensity of the 
power system, which has to drop to 100 gCO2/kWh by 2030, to 50 
gCO2/kWh by 2035, and eventually to full decarbonisation by 2050 
(CCC, 2015c). The national government agent applies a CO2 price to 
reach those budgets, and can increase the CO2 price by up to 200% over 
the “no-increase” CO2 price if those budgets are not met. The “no-in
crease” price is based on the CO2 price used in an official report (BEIS, 
2017). If the desired carbon intensity is reached, the government de
creases the CO2 price again to the “no-increase” price. Hence, policy 
decisions are the result of the investment choices of the investors, and 
the two dimensions (i.e. policy decisions and investment choices) 
co-evolve in BRAIN-Energy (Barazza and Strachan, 2020a). It is worth 
noting that in BRAIN-Energy, due to the fact that investors have 
imperfect foresight and that their investment choices are not-optimal, 
carbon budgets may be missed and scenarios may not reach a full 
decarbonisation by 2050. 

The regulator agent, who also has imperfect foresight, enforces a 
capacity market by forecasting every year the maximum potential 
electricity production four years ahead. If this is lower than the expected 
peak demand at the same future point in time, it calls a capacity auction 
to which gas, nuclear and biomass technologies can participate. Winners 
of the auction receive a guaranteed price for 15 years. In BRAIN-Energy 

Table 2 
Overview of investor agents and their strategies in BRAIN-Energy.  

Investor agents Description Region and number Technology 

Incumbent 
utility 

Main players in the electricity sector, whose main business is electricity generation. 
They aim to provide stable dividends to their shareholders. 

2 national agents All: nuclear, gas, biomass, PV, 
onshore-and offshore wind 

New-entrant These are new types of investors in electricity generation assets (for example 
institutional investors). These agents intend to invest in renewable energy to 
maximise their profits. 

2 national agents Renewable energy only: biomass, 
PV, onshore-and offshore wind 

Municipal 
utility 

Directly or indirectly owned by a municipality or city or local authority. These 
companies operate only in their regions. Their objective is to supply affordable and 
reliable energy to local consumers, and some also have an environmental focus. 

1 in London region, 1 in Scotland 
region, 1 in the rest of UK region 

London: PV 
Scotland and the rest of UK: 
biomass, PV, onshore and offshore 
wind 

Household 
aggregator 

Households invest in small scale renewable energy plants and participate in demand 
response programs. They invest in renewable energy to cover self-consumption, and 
for environmental reasons. 

1 in London region, 1 in Scotland 
region, 1 in the rest of UK region 

London: PV 
Scotland and the rest of UK: PV and 
onshore wind  
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the capacity market calculation is based on Bhagwat et al. (2017). 
The mathematical formulations behind the CfDs and the capacity 

market are provided in the model documentation (Barazza et al., 2020). 

3.4. Demand-side response 

System flexibility in BRAIN-Energy has been improved through DSR, 
which can become crucial as the share of renewable energy becomes 
higher in the future low-carbon electricity system. In BRAIN-Energy 
households in SLES can participate in DSR. Smart appliances are 
assumed to be controlled collaboratively at the local level to balance the 
local electricity demand and electricity generation from local renewable 
energy plants. The potential of shiftable demand at each time-slice is 
estimated based on the participation rate of local households in the DSR 
scheme and the physical shiftable potential of individual smart appli
ances. The participation rate is assumed to increase from 0% in the base 
year (2012) to 100% by 2050 linearly, and only appliances that can be 
controlled via direct local control schemes are considered. As the resi
dential sector will be dramatically electrified approaching 2050 to 
reduce GHG emissions, the DSR potential is assumed to increase 
considerably over the modelling horizon due to the penetration of 
controllable appliances into UK households. For more details of the 
settings of the DSR modelling, please refer to Li and Pye (2018). 

4. Results and discussion 

4.1. Scenarios 

Four scenarios, as defined in Table 3, are investigated to understand 
the influences of local investors, carbon prices, and system flexibility on 
the role of SLES within the transition of the UK electricity system. The 
reference scenario (National-only) is to show how the power system 
transits to a low-carbon system with a traditional setting where only 
national agents can take part in the electricity market with carbon 
pricing. The rest three scenarios with local investors show the impact of 
the scale-up of SLES, considering various settings of carbon prices and 
DSR. The SLES-NoDSR and SLES-DSR scenarios incorporate local in
vestors and local policy agents, without or with (respectively) the option 
of DSR to maximise the use of renewable energy. Finally, the SLES- 
NoCarbon scenario contrasts the role of local investors in the market 
without carbon pricing. 

This study highlights key differences between these four scenarios; 
focusing on the operation of the electricity system, investments in 
renewable energy, overall emissions, which market players make the 
key investments, and which market players win or lose. 

The results from BRAIN-Energy show that the strategies and de
cisions of investors and policy-makers make a critical difference to both 
SLES and then overall national efforts to decarbonise the electricity 
sector. In the discussion below, we step through: (1) How SLES can help 
ensure the electricity system is stable (section 4.2); (2) How SLES can 
significantly boost investments in renewable energy (section 4.3); (3) 
How SLES can enact faster emission reductions (in the 2030s) but not 
quite as low by 2050 (section 4.4); and (4) How incumbent national 
investors see their market share and profitability erode under SLES and 
even further with SLES plus DSR (section 4.5). 

4.2. System stability 

System stability (i.e. ensuring supply always meets demand) heavily 
relies on future investment activities in the market. The de-rated ca
pacity margin – the effective extra capacity of a power system there is 
compared to its peak load, can thus give insights into how investment 
activities impact the overall stability of the electricity system through 
time. This is illustrated in Fig. 1. High levels of de-rated capacity margin 
show the impact of new (low carbon) investment, while the drops of de- 
rated capacity margin are majorly caused by decommissioning the 
existing power plants from the base year (i.e. 2012). 

As capacity margins fall as old plants retire, the regulator agent 
foresees possible further closures of power plants a few years ahead and 
holds a capacity market auction in order to stimulate construction of 
power plants. In the years following the base year, the incumbent in
vestors tend to invest in gas power plants since they have a short con
struction period and this maintains the de-rated capacity margin at a 
sufficient level (i.e. 5%). However, as carbon prices increase over time 
(in the three scenarios with carbon pricing), different dynamics play out 
to ensure there is sufficient capacity of power plants for generation at all 
times. In the reference case (National-only), a few incumbent investors 
profitably dominate the market and are able to invest in power plants 
that have high capital costs, such as nuclear and biomass power plants. 
Due to the longer construction period of these plants, the de-rated ca
pacity margin is mainly lower than those for SLES-NoDSR and SLES- 
DSR. In contrast, when local investors can participate in the market 
(e.g. SLES-NoDSR), they invest in new renewable energy plants, 
including biomass, wind, and solar plants, with a shorter construction 
period, and the de-rated capacity margin rebounds faster. 

The influence of DSR, including demand-shifting and -shedding, is 
seen by comparing SLES-NoDSR and SLES-DSR. When there is no DSR, 
electricity demands cannot be shifted to reduce peak loads. Policy agents 
thus hold capacity market auctions earlier and more frequently. As a 
result, new power plants are deployed earlier so that the de-rated ca
pacity margin for SLES-NoDSR is mostly higher than that for SLES-DSR. 

However, in the scenario with no carbon price (SLES-NoCarbon), the 
de-rated capacity margin is volatile and insufficient to fulfil the elec
tricity demands after 2030. This scenario has the lowest electricity 

Table 3 
Definition of scenarios.  

Scenario Investor Carbon price Demand-side response 

National-only National investors only With carbon price; two times higher if carbon budget is not met No 
SLES-NoDSR Both national and local investors With carbon price; two times higher if carbon budget is not met No 
SLES-DSR Both national and local investors With carbon price; two times higher if carbon budget is not met Yes 
SLES-NoCarbon Both national and local investors No carbon price Yes  

Fig. 1. Five-year average de-rated capacity margin over the modelling horizon 
for four scenarios. 
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prices and investors struggle to recoup their investment capital. The 
lowest electricity prices are due to no carbon price being introduced to 
increase electricity production costs in the market. Although the CfD 
regulatory mechanism, and local investors are boosting renewables, this 
doesn’t happen fast enough with supply-demand gaps opening up 
despite the best efforts of the capacity market plus the use of DSR. 

4.3. Power mix 

As shown in Fig. 2, the existence of local investors in sub-national 
regions changes which low-carbon technologies are invested in. The 
SLES scenarios dramatically increase the share of renewable energy in 
the system, compared to the scenario with only national investors (Na
tional-only) where these incumbent investors with a high level of equity 
invest more in nuclear power plants to bring in more revenues, with less 
capital remaining for investment in renewable energy plants. In 
contrast, in all scenarios with local investors, revenues from selling 
electricity to sub-national regions enable local investors to further invest 

in more renewable energy plants, such as wind, PV and even biomass 
power plants. Locally driven renewable energy deployment can occur 
without carbon pricing (i.e. SLES-NoCarbon) but is further boosted 
(higher renewable energy share in a larger overall system) with carbon 
pricing (i.e. SLES-NoDSR and SLES-DSR). More detailed electricity 
production by technology for the four scenarios can be found in Ap
pendix B. 

4.4. GHG emissions 

Investor agents’ investments in various technology mixes (Fig. 2 and 
Appendix B) have significant impacts on GHG emissions from the power 
system (Fig. 3). The reference case (National-only) has the highest GHG 
emissions between 2031 and 2040, but then the lowest emissions in the 
last decade among the four scenarios. This is due to the lowest share of 
renewable energy with more gas power plants retained in the medium 
term for generation, but by the 2040s more nuclear power plants are 
gradually deployed into the power system to dramatically reduce GHG 

Fig. 2. Five-year average power mix over the modelling horizon for four scenarios.  
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emissions. In fact, National-only is the only scenario that fully decar
bonises the power sector by 2050 based on the stylised settings of the 
model. As for the cases with local investors (SLES-NoDSR and SLES- 
DSR), the opposite timing occurs with much lower GHG emissions in 
the 2030s (40% and 30% less respectively) due to the higher in
vestments in renewable energy. In the 2040s, however, the uptake rate 
of renewable energy doesn’t match with the sharp rise in electricity 
demand, with existing gas power plants thus being used to provide 
additional electricity. The sharp increase in electricity demand is due to 
the dramatic electrification of the end-use sectors for decarbonisation. 
As for the lower GHG emissions in the 2030s in SLES-NoCarbon, this is 
due to the underinvestment in power plants so that there is a shortage of 
electricity generation to fulfil the demand, as shown in Figure B4. 

Perhaps surprisingly, the case with DSR (i.e. SLES-DSR) has rela
tively higher GHG emissions than the case without DSR (i.e. 19% and 
64% higher in the 2030s and 2040s respectively). The lower emissions in 
SLES-NoDSR is due to the earlier adoption of more nuclear plants, as 
policy agents are more likely to foresee a shortage of capacity earlier 
(with no DSR to manage peak demand). On the other hand, in SLES-DSR, 
less low-carbon power plants, such as nuclear and biomass plants, are 
introduced into the system as peak loads can be reduced with DSR, with 
gas plants then used as an additional option to fill the supply shortage, as 
shown in Figure B3. As a result, higher GHG emissions are seen in both 

the early and late periods in the DSR case (SLES-DSR) than the no-DSR 
case (SLES-NoDSR). 

4.5. Cumulative investments, and remaining capital 

The investment trends across the four scenarios are shown in Fig. 4. 
In the reference case (National-only), incumbent utilities provide 79% of 
total investments over the whole period, while 21% is provided by new 
entrants. Incumbent investors actively participate in the capacity market 
to invest in high capital expenditure plants (e.g., nuclear and biomass), 
that can yield more revenue from electricity provision than other plants 
as well as ensuring sufficient capacity in the power system. In contrast, 
with the presence of new local investors, the investments in renewable 
energy increase significantly, rising from 21% in SLES-NoDSR to 46% in 
SLES-DSR. The higher renewable energy investments are driven by 
preferences of local investors for renewable energy in sub-national 
regions. 

Additionally, DSR encourages more investments in renewable energy 
with inherent variability, such as onshore wind and PV plants, as shown 
in SLES-DSR in Fig. 4(b). As the demand profile can be transformed by 
demand-shifting to match with the supply profile of these variable 
renewable sources, local investors can realise higher revenues and 
therefore increase investments in renewable energy. As a result, the role 
of incumbents is lower in SLES-NoDSR, where they create only 50% of 
total investment compared to 79% in National-only. Investment by in
cumbents falls further still in SLES-DSR to only 39%, with one incum
bent utility leaving the market entirely, while local agents are delivering 
33% of total investments, the highest level across all scenarios. 

The success (or failure) of investments leads to investor agents’ 
financial performance in terms of capital (Fig. 5). Without the compe
tition from local investors in the National-only scenario, incumbent in
vestors dominate the market with their fleet of gas, nuclear, and biomass 
plants. On the other hand, the scenarios with the participation of local 
investors in the market show two major impacts: (1) the dominance of 
incumbent investors diminishes dramatically; (2) overall capital is much 
higher than the reference case. As the deployment of SLES grows over 
time, local investors’ plants gradually become the primary electricity 
sources, leaving a limited supply gap for incumbent utilities to fill. Na
tional investors’ capital thus shrinks significantly over time. The domi
nance of local investors can even force incumbent utilities to leave the 

Fig. 3. Cumulative GHG emissions in last two decades for four scenarios.  

Fig. 4. Cumulative investments (a) by investor type and (b) by technology for four scenarios.  
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market as those investors’ plants are not able to compete with local 
investors’ renewable energy plants to make sufficient profits. Moreover, 
local investors can benefit from renewable energy plants’ lower opera
tion and maintenance costs to accumulate much more capital than na
tional investors. 

The capital of local investors in London remains at a similar level in 
both years across the three cases with local investors. This implies local 
investors in London exploit almost the full potential of PV in London 
before 2035 due to the highly competitive prices of PV plants in all three 
cases. On the other hand, local investors in Scotland and the rest of the 
UK have higher capital in 2045 since additional renewable energy plants 
can be deployed in these two regions. 

It is noteworthy that although the scale-up of SLES allows local in
vestors to thrive in the long run, local investors do need seed capital, 
which is given in the model, to participate in the electricity market at the 
beginning. Initial supports (e.g. subsidies, loans, and grants) from local 
or national governments are thus crucial to deploy SLES at scale 
(Braunholtz-Speight et al., 2020). 

5. Conclusions and policy implications 

The BRAIN-Energy agent-based model (ABM) was extended to study 
smart local energy systems (SLES), including the addition of local re
gions with both the incorporation of new local investor agents and local 
governance agents, combined with an improved temporal resolution and 
demand-side flexibility. This allowed the investigation of strategic de
cision making under non-optimal decision making for SLES, within a 
model that captures the operational characteristics of an electricity 
system. Four scenarios were created to explore the conditions in which 
SLES (with and without demand-side response (DSR)) play a significant 
role in the future electricity system. 

This novel ABM modelling study of SLES has a number of limitations 
which could be addressed in future work. Some of the limitations are 
listed below, which are not exhaustive.  

• Compared to a full electricity dispatch model it still has a relatively 
coarse temporal and spatial disaggregation.  

• A simplified modelling of how local investors are incentivised and 
capitalised, without considering novel business models, new market 
mechanisms, and new regulations. 

• The potential of DSR is estimated exogenously, considering house
holds’ participation rates and physical capability of demand-shifting 
activities.  

• Further demand-side measures (e.g. adoption of energy-efficient 
appliances) are not considered explicitly (although are incorpo
rated into future electricity consumption). 

• A reduced menu of low carbon technologies is available, with (un
proven at scale) negative emission technologies – such as bioenergy- 
fuelled carbon capture and storage (BECCS) – not taken into account. 

Unexpected systematic disruptions (e.g. fuel shortage and price hike 
due to geopolitical conflicts) could also be considered in scenarios in 
the future. 

But this novel ABM modelling study of SLES generates a set of in
sights into the non-optimal strategic decisions of market players relevant 
to the scale-up of SLES. These insights, explained in the following sec
tions, should be taken into account when policy-makers try to boost the 
share of renewable energy in a power system with SLES. 

According to the analysis, SLES is important for the uptake of 
renewable energy. The enabling of SLES by local governments allows 
local investors (e.g. municipal utility and household aggregator) to 
actively participate in and then lead the electricity market. The share of 
renewable energy in the power system can hence be scaled-up faster and 
further. Renewable-based SLES systems can provide a secure supply of 
electricity, and while overall investment requirements to decarbonise 
the power system are higher with local agents and DSR, the transition’s 
resulting variable costs are less expensive. 

In addition, carbon prices are influential for system stability under 
market players’ investment decisions for decarbonisation, from the 
perspective of this model. National government imposing carbon prices 
on the power system, works alongside local government support of SLES 
and the regulator running capacity markets to ensure supply and de
mand are balanced. The agent-led dynamics (incumbents vs. new en
trants, with/without DSR) are different in each scenario. But without 
carbon pricing, the investment security in a decarbonising system is not 
enough for non-optimising investors. 

However, DSR can give mixed messages and hence alternate strate
gies in a non-optimal electricity market, based on the modelling as
sumptions in this study. Despite the indisputable benefits of DSR in 
balancing electricity supply and demand, it can result in policy agents 
(who also act imperfectly) postponing the incentives that are required 
for heterogeneous investor agents to build new low carbon plants. 
Consequently, the uptake of low-carbon generation technologies could 
be delayed so that more dramatic investments in new plants approach
ing 2050 are needed. 

Finally, the introduction of SLES significantly reduces but does not 
eliminate the market role of incumbents according to the findings. Even 
though SLES gains market share and develops profitable new local 
producers (municipal utilities and household aggregators), the genera
tion from renewable energy may not always be enough to fulfil demands 
in sub-national regions, and certainly cannot always meet nationwide 
demand. Hence incumbent investors are still needed (and need to be 
incentivised) to invest in capital-intensive, dispatchable plants to ensure 
system stability. Without SLES, incumbents should play the utmost 
important role in deploying low-carbon generation technologies, such as 
nuclear power plants, to decarbonise the power system. However, in this 
case, consumers might not be able to enjoy low electricity prices as the 
share of renewable energy scales up at a much slower pace. 

Smart local energy systems (SLES) hold the promise of flexible 
electricity decarbonisation pathways that fully engage with local com
munities. But as this novel modelling study shows, to realise the scale-up 
of SLES needs an understanding of the non-optimal strategic decision 
making of local investors and governance agents, and the resultant im
pacts on the emissions, costs and stability of the national electricity 
system. 
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Appendix A. Model flow of the BRAIN-Energy ABM 

To simulate the UK’s liberalised electricity market, the BRAIN-Energy agent-based model simulates the operations of the power system, trading in 
the electricity market, individual investors’ behaviours, and policy-makers’ interventions sequentially in each model year (Figure A1). This procedure 
repeats iteratively until the target year (e.g. 2050) is reached. At the beginning of each year, investors decommission unprofitable power plants and 
then take short-term operational decisions (electricity production from their stock of assets), followed by bidding electricity into the market at a 
national and local level. As a result of their electricity sales, the yearly national and local electricity price is created, as well as the electricity supply 
curve and the CO2 emissions from the power sector. Based on their electricity sales and the electricity price, investors assess the profitability of their 
stock of assets and their market share is updated. Investors whose equity is negative exit the market.

Fig. A.1. Yearly simulation procedure of the model  

Policy agents (i.e. the national government agent, the regulator agent and local government agents) are active in the next step: the national 
government agent checks the amount of CO2 emissions (or emission intensity) produced by the power sector at the national level. If the interim 
decarbonisation targets are not met, the national government agent can adjust the prevailing CO2 price at the national level. The national government 
agent also subsidises investments in renewable technologies through Contracts for Difference at the national level. The regulator agent also intervenes 
in the market to manage eventual supply gaps by enforcing capacity auctions at the national level. Local government agents take the necessary policy 
measures at the local level (subsidising specific renewable technologies and managing demand response programs). Therefore, the policy changes that 
the policy agents (the national government, regulator and local government agents) enforce in BRAIN-Energy are endogenous and co-evolve with the 
emergent techno-economic properties of the sector through the years. 

Finally, investors decide about new investments. Newly committed investments start being operational after a planning- and construction lag, and 
the resulting generation mix is, therefore, an emergent result of the investment and decommissioning decisions of the investors. 

For more detailed information about how the model works, please refer to the model documentation (Barazza et al., 2020). 
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Appendix B. Electricity provision by technology in four scenarios

Fig. B.1. Electricity provision by technology for National-only scenario  

Fig. B.2. Electricity provision by technology for SLES-NoDSR scenario  

Fig. B.3. Electricity provision by technology for SLES-DSR scenario  

Fig. B.4. Electricity provision by technology for SLES-NoCarbon scenario 
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