48 research outputs found

    A TGFβ-ECM-Integrin signalling axis drives structural reconfiguration of the bile duct to promote polycystic liver disease

    Get PDF
    : The formation of multiple cysts in the liver occurs in a number of isolated monogenic diseases or multisystemic syndromes, during which bile ducts develop into fluid-filled biliary cysts. For patients with polycystic liver disease (PCLD), nonsurgical treatments are limited, and managing life-long abdominal swelling, pain, and increasing risk of cyst rupture and infection is common. We demonstrate here that loss of the primary cilium on postnatal biliary epithelial cells (via the deletion of the cilia gene Wdr35) drives ongoing pathological remodeling of the biliary tree, resulting in progressive cyst formation and growth. The development of cystic tissue requires the activation of transforming growth factor-β (TGFβ) signaling, which promotes the expression of a procystic, fibronectin-rich extracellular matrix and which itself is perceived by a changing profile of integrin receptors on the cystic epithelium. This signaling axis is conserved in liver cysts from patients with either autosomal dominant polycystic kidney disease or autosomal dominant polycystic liver disease, indicating that there are common cellular mechanisms for liver cyst growth regardless of the underlying genetic cause. Cyst number and size can be reduced by inhibiting TGFβ signaling or integrin signaling in vivo. We suggest that our findings represent a therapeutic route for patients with polycystic liver disease, most of whom would not be amenable to surgery

    Risk of hyperkalemia in patients with moderate chronic kidney disease initiating angiotensin converting enzyme inhibitors or angiotensin receptor blockers : a randomized study

    Get PDF
    Background: Angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers are renoprotective but both may increase serum potassium concentrations in patients with chronic kidney disease (CKD). The proportion of affected patients, the optimum follow-up period and whether there are differences between drugs in the development of this complication remain to be scertained. Methods: In a randomized, double-blind, phase IV, controlled, crossover study we recruited 30 patients with stage 3 CKD under restrictive eligibility criteria and strict dietary control. With the exception of withdrawals, each patient was treated with olmesartan and enalapril separately for 3 months each, with a 1-week wash-out period between treatments. Patients were clinically assessed on 10 occasions via measurements of serum and urine samples. We used the Cochran-Mantel-Haenszel statistics for comparison of categorical data between groups. Comparisons were also made using independent two-sample t-tests and Welch's t-test. Analysis of variance (ANOVA) was performed when necessary. We used either a Mann-Whitney or Kruskal-Wallis test if the distribution was not normal or the variance not homogeneous. Results: Enalapril and olmesartan increased serum potassium levels similarly (0.3 mmol/L and 0.24 mmol/L respectively). The percentage of patients presenting hyperkalemia higher than 5 mmol/L did not differ between treatments: 37% for olmesartan and 40% for enalapril. The mean e-GFR ranged 46.3 to 48.59 ml/mint/1.73 m2 in those treated with olmesartan and 46.8 to 48.3 ml/mint/1.73 m2 in those with enalapril and remained unchanged at the end of the study. The decreases in microalbuminuria were also similar (23% in olmesartan and 29% in enalapril patients) in the 4 weeks time point. The percentage of patients presenting hyperkalemia, even after a two month period, did not differ between treatments. There were no appreciable changes in sodium and potassium urinary excretion. Conclusions: Disturbances in potassium balance upon treatment with either olmesartan or enalapril are frequent and without differences between groups. The follow-up of these patients should include control of potassium levels, at least after the first week and the first and second month after initiating treatment

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Three-Component Airborne Magnetometers

    No full text

    Genetic and clinical heterogeneity in paroxysmal kinesigenic dyskinesia: Evidence for a third EKD gene

    No full text
    Paroxysmal kinesigenic dyskinesia (PKD) is characterised by paroxysms of choreic, dystonic, ballistic, or athetoid movements. The attacks typically last seconds to minutes in duration and are induced by sudden voluntary movement. PKD loci have been identified on chromosome 16. We present the clinical and genetic details of two British and an Indian family with PKD. Linkage to the PKD loci on chromosome 16 has been excluded in one of these families, providing evidence for a third loci for PKD. Detailed clinical descriptions highlight the presence of both adolescent and infantile seizures in some of the PKD families. This study attempts to clarify the relationship of adolescent and infantile seizures to PKD and provides evidence that PKD is both genetically and clinically heterogeneous. (C) 2002 Movement Disorder Society

    The Influence of Diet on Mercury Intake by Little Tern Chicks

    Get PDF
    We assessed mercury levels in the feathers of little tern (Sternula albifrons) chicks from hatching to fledging and in their prey captured by adults in three main foraging habitats: lagoon, salinas, and adjacent sea. These data were used to model mercury concentration in chick feathers through food ingestion, in order to explore the effects that changes in diet would have on the mercury burden of chicks as they aged. The mercury concentration in feathers of chicks raised in sandy beaches was higher than in those raised in salinas. Lagoon prey had a significantly higher mercury concentration (0.18 ± 0.09 µg g-1 dry weight [d.w.]) than prey from salinas and the adjacent sea (both 0.06 ± 0.03 µg g-1 d.w.). In relation to prey species group, mercury content was significantly higher for bottom fish (0.17 ± 0.10 µg g-1 d.w.) than for pelagic (0.08 ± 0.06 µg g-1 d.w.), euryhaline fish (0.04 ± 0.02 µg g-1 d.w.), and crustacea (0.08 ± 0.03 µg g-1 d.w.). To understand the importance of mercury content of each prey group, we ran several theoretical scenarios assuming that chicks were fed on only one species at a time. Considering a diet restricted to lagoon (mostly benthic) prey, A- and B-chicks may encounter health problems with an excess of mercury. On the contrary, a diet restricted to marine (mostly pelagic) prey would decrease the mercury concentration in chick feathers; the fast growth rate and the related mercury dilution effect in little tern chicks seem to decrease mercury levels in their feathers. Our study supports the fact that marine pelagic prey are important for estuarine seabirds because they provide a food resource with lower contamination levels. This model may have a wider application in similar seabird species and coastal environments
    corecore