2,432 research outputs found

    Management of pediatric radiation dose using Philips fluoroscopy systems DoseWise: perfect image, perfect sense

    Get PDF
    Although image quality (IQ) is the ultimate goal for accurate diagnosis and treatment, minimizing radiation dose is equally important. This is especially true when pediatric patients are examined, because their sensitivity to radiation-induced cancer is two to three times greater than that of adults. DoseWise is an ALARA-based philosophy within Philips Medical Systems that is active at every level of product design. It encompasses a set of techniques, programs and practices that ensures optimal IQ while protecting people in the X-ray environments. DoseWise methods include management of the X-ray beam, less radiation-on time and more dose information for the operator. Smart beam management provides automatic customization of the X-ray beam spectrum, shape, and pulse frequency. The Philips-patented grid-controlled fluoroscopy (GCF) provides grid switching of the X-ray beam in the X-ray tube instead of the traditional generator switching method. In the examination of pediatric patients, DoseWise technology has been scientifically documented to reduce radiation dose to <10% of the dose of traditional continuous fluoroscopy systems. The result is improved IQ at a significantly lower effective dose, which contributes to the safety of patients and staff

    Golem95C: A library for one-loop integrals with complex masses

    Full text link
    We present a program for the numerical evaluation of scalar integrals and tensor form factors entering the calculation of one-loop amplitudes which supports the use of complex masses in the loop integrals. The program is built on an earlier version of the golem95 library, which performs the reduction to a certain set of basis integrals using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with arbitrary masses in an algebraic approach as well as in the context of a unitarity-inspired numerical reconstruction of the integrand.Comment: 22 pages, 3 figure

    A system identification approach to non-invasive central cardiovascular monitoring

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (leaves 180-187).This thesis presents a new system identification approach to non-invasive central cardiovascular monitoring problem. For this objective, this thesis will develop and analyze blind system identification and input signal reconstruction algorithms for a class of 2-channel IIR and Wiener systems. In particular, this thesis will present blind identifiability conditions for a class of 2-channel IIR and Wiener wave propagation systems and develop the associated blind identification algorithms. It will be shown that the blind identifiability conditions can be achieved in many real-world applications by appropriate selection of channel lengths, sensor locations, and sampling frequency which are the specifications that the system design can exploit for blind identifiability In addition, this thesis will develop a novel input signal reconstruction algorithm that is applicable to general class of multi-channel IIR and Wiener systems. Furthermore, this thesis will rigorously analyze and evaluate three analytic measures for determining the system order and other key parameters of the black-box dynamics as well as for quantifying the quality of the identified gray-box dynamics, without any direct use of unknown input signal: persistent excitation, model identifiability and asymptotic variance. The blind identification and input signal reconstruction algorithms will first be applied to 2-sensor central cardiovascular monitoring problem using two distinct peripheral blood pressure measurements, where the cardiovascular wave propagation dynamics is blindly identified and the aortic blood pressure and flow signals are reconstructed by exploiting black-box and physics-based gray-box model structures of the cardiovascular system.(cont.) The validity of the 2-sensor central cardiovascular monitoring methodology will be illustrated by experimental data from swine subjects and simulation data from a full-scale human cardiovascular simulator across diverse physiologic conditions. The 2-sensor central cardiovascular monitoring methodology will then be extended to address noninvasive, 1-sensor cardiovascular monitoring problem, where the specific challenges involved are 1) identifying the cardiovascular wave propagation dynamics and reconstructing the aortic blood pressure signal by exploiting the measurement from a single peripheral sensor, and 2) identifying the scale for calibrating the blood pressure signal. In order to address these challenges, this thesis will propose a heuristics-based system order estimation algorithm and a model-based blood pressure calibration algorithm, which will be combined with the blind identification of the cardiovascular wave propagation dynamics to realize the non-invasive 1-sensor central cardiovascular monitoring. The non-invasive 1-sensor central cardiovascular monitoring methodology will be illustrated by experimental data from swine subjects, simulation data from a full-scale human cardiovascular simulator, and experimental data from human subjects across diverse physiologic conditions.by Jin-Oh Hahn.Ph.D

    Massless Decoupled Doublers: Chiral Yukawa Models and Chiral Gauge Theories

    Full text link
    We present a new method for regularizing chiral theories on the lattice. The arbitrariness in the regularization is used in order to decouple massless replica fermions. A continuum limit with only one fermion is obtained in perturbation theory and a Golterman-Petcher like symmetry related to the decoupling of the replicas in the non-perturbative regime is identified. In the case of Chiral Gauge Theories gauge invariance is broken at the level of the regularization, so our approach shares many of the characteristics of the Rome approach.Comment: 11 page

    Proposal for a method to estimate nutrient shock effects in bacteria

    Get PDF
    Plating methods are still the golden standard in microbiology; however, some studies have shown that these techniques can underestimate the microbial concentrations and diversity. A nutrient shock is one of the mechanisms proposed to explain this phenomenon. In this study, a tentative method to assess nutrient shock effects was tested. Findings To estimate the extent of nutrient shock effects, two strains isolated from tap water (Sphingomonas capsulata and Methylobacterium sp.) and two culture collection strains (E. coli CECT 434 and Pseudomonas fluorescens ATCC 13525) were exposed both to low and high nutrient conditions for different times and then placed in low nutrient medium (R2A) and rich nutrient medium (TSA). The average improvement (A.I.) of recovery between R2A and TSA for the different times was calculated to more simply assess the difference obtained in culturability between each medium. As expected, A.I. was higher when cells were plated after the exposition to water than when they were recovered from high-nutrient medium showing the existence of a nutrient shock for the diverse bacteria used. S. capsulata was the species most affected by this phenomenon. This work provides a method to consistently determine the extent of nutrient shock effects on different microorganisms and hence quantify the ability of each species to deal with sudden increases in substrate concentration. <br/

    Golem95: a numerical program to calculate one-loop tensor integrals with up to six external legs

    Full text link
    We present a program for the numerical evaluation of form factors entering the calculation of one-loop amplitudes with up to six external legs. The program is written in Fortran95 and performs the reduction to a certain set of basis integrals numerically, using a formalism where inverse Gram determinants can be avoided. It can be used to calculate one-loop amplitudes with massless internal particles in a fast and numerically stable way.Comment: 30 pages, 2 figure

    Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    Get PDF
    Copyright @ 2012 Nature Publishing GroupThis article has been made available through the Brunel Open Access Publishing Fund.Background: The objective of this study was to determine the molecular mechanism(s) responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double strand break (DSB) repair in cells. Quantitative-PCR (Q-PCR) established the expression levels of key DNA DSB repair proteins. Imaging flow cytometry using Annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Over-expression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.This work was supported in part by The Vidal Sassoon Foundation USA. This article is made available through the Brunel Open Access Publishing Fund

    Universality of the Lyapunov regime for the Loschmidt echo

    Full text link
    The Loschmidt echo (LE) is a magnitude that measures the sensitivity of quantum dynamics to perturbations in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory, supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of the Fermi wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity with respect to the form of the perturbation and the behavior of individual (non-averaged) initial conditions. Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish between classical and quantum origin for the different terms of the LE. This approach renders an understanding for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex

    Patient dose reduction during voiding cystourethrography

    Get PDF
    Voiding cystourethrography (VCUG) is a commonly performed examination in a pediatric uroradiology practice. This article contains suggestions on how the radiation dose to a child from VCUG can be made ‘as low as reasonably achievable–(ALARA). The pediatric radiologist should consider the appropriateness of the clinical indication before performing VCUG and utilize radiation exposure techniques and parameters during VCUG to reduce radiation exposure to a child. The medical physicist and fluoroscope manufacturer can also work together to optimize a pulsed-fluoroscopy unit and further reduce the radiation exposure. Laboratory and clinical research is necessary to investigate methods that reduce radiation exposures during VCUG, and current research is presented here

    Higgs Boson Masses in the Complex NMSSM at One-Loop Level

    Get PDF
    The Next-to-Minimal Supersymmetric Extension of the Standard Model (NMSSM) with a Higgs sector containing five neutral and two charged Higgs bosons allows for a rich phenomenology. In addition, the plethora of parameters provides many sources of CP violation. In contrast to the Minimal Supersymmetric Extension, CP violation in the Higgs sector is already possible at tree-level. For a reliable understanding and interpretation of the experimental results of the Higgs boson search, and for a proper distinction of Higgs sectors provided by the Standard Model or possible extensions, the Higgs boson masses have to be known as precisely as possible including higher-order corrections. In this paper we calculate the one-loop corrections to the neutral Higgs boson masses in the complex NMSSM in a Feynman diagrammatic approach adopting a mixed renormalization scheme based on on-shell and DRˉ\bar{DR} conditions. We study various scenarios where we allow for tree-level CP-violating phases in the Higgs sector and where we also study radiatively induced CP violation due to a non-vanishing phase of the trilinear coupling AtA_t in the stop sector. The effects on the Higgs boson phenomenology are found to be significant. We furthermore estimate the theoretical error due to unknown higher-order corrections by both varying the renormalization scheme of the top and bottom quark masses and by adopting different renormalization scales. The residual theoretical error can be estimated to about 10%
    corecore