4,879 research outputs found

    Structure-mechanics relationships of collagen fibrils in the Osteogenesis Imperfecta Mouse model

    Get PDF
    The collagen molecule, which is the building block of collagen fibrils, is a triple helix of two α1(I) chains and one α2(I) chain. However, in the severe mouse model of osteogenesis imperfecta (OIM), deletion of the COL1A2 gene results in the substitution of the α2(I) chain by one α1(I) chain. As this substitution severely impairs the structure and mechanics of collagen-rich tissues at the tissue and organ level, the main aim of this study was to investigate how the structure and mechanics are altered in OIM collagen fibrils. Comparing results from atomic force microscopy imaging and cantilever-based nanoindentation on collagen fibrils from OIM and wild-type (WT) animals, we found a 33% lower indentation modulus in OIM when air-dried (bound water present) and an almost fivefold higher indentation modulus in OIM collagen fibrils when fully hydrated (bound and unbound water present) in phosphate-buffered saline solution (PBS) compared with WT collagen fibrils. These mechanical changes were accompanied by an impaired swelling upon hydration within PBS. Our experimental and atomistic simulation results show how the structure and mechanics are altered at the individual collagen fibril level as a result of collagen gene mutation in OIM. We envisage that the combination of experimental and modelling approaches could allow mechanical phenotyping at the collagen fibril level of virtually any alteration of collagen structure or chemistry.United States. Dept. of Defense. Presidential Early Career Award for Scientists and EngineersNational Science Foundation (U.S.) (CAREER Award

    Computation of the Heavy-Light Decay Constant using Non-relativistic Lattice QCD

    Full text link
    We report results on a lattice calculation of the heavy-light meson decay constant employing the non-relativistic QCD approach for heavy quark and Wilson action for light quark. Simulations are carried out at ÎČ=6.0\beta=6.0 on a 163×4816^3\times 48 lattice. Signal to noise ratio for the ground state is significantly improved compared to simulations in the static approximation, enabling us to extract the decay constant reliably. We compute the heavy-light decay constant for several values of heavy quark mass and estimate the magnitude of the deviation from the heavy mass scaling law fPmP=constf_{P} \sqrt{m_{P}} = const. For the BB meson we find fB=171±22−45+19f_{B} = 171\pm 22^{+19}_{-45} MeV, while an extrapolation to the static limit yields fBstaticf_{B}^{static} = 297±36−30+15297\pm 36^{+15}_{-30} MeV.Comment: 34 pages in LaTeX including 10 figures using epsf.sty, uuencoded-gziped-shar format, HUPD-940

    The comparative hemodynamic efficacy of lower limb muscles using transcutaneous electrical stimulation.

    Get PDF
    Circulation in the limbs can be augmented using transcutaneous electrical stimulation devices. The optimum muscle stimulation sites for enhancement of vascular hemodynamic parameters have not been identified.Seven suitable anatomic sites were identified within the right leg. Twelve healthy participants were recruited (mean age, 23.1 ± 3 years; body mass index, 23.1 ± 3 kg/m(2)). Muscles were stimulated by transcutaneous bipolar electrodes at a current twice their motor threshold, at 1 Hz, for 5 minutes. Hemodynamic ultrasound measurements were taken from the right femoral vein. Laser Doppler measurements from the feet of the stimulated and nonstimulated sides were obtained. Baseline measurements were compared with readings after 5 minutes of stimulation, with device active. Discomfort experienced for stimulation of each muscle was rated out of 100.Hemodynamic changes displayed large intersubject variation, with no muscle statistically superior to the others. All muscles increased peak velocity; contraction of medial gastrocnemius increased time-averaged maximum velocity and volume flow. All muscles increased foot fluximetry (P < .05). Discomfort correlated weakly with current applied. Tibialis anterior and vastus lateralis were most tenable.Transcutaneous stimulation increases hemodynamic parameters significantly, locally and systemically. No optimum stimulation site has been identified, and it is limited by comfort and variability in the subjects response. Gastrocnemius, tibialis anterior, and vastus lateralis all provoke large changes in hemodynamic parameters, but clinical efficacy in disease prevention and management has not been explored

    The comparative haemodynamic efficacy of lower limb muscles using transcutaneous electrical stimulation

    Get PDF
    BACKGROUND: Circulation in the limbs can be augmented using transcutaneous electrical stimulation devices. The optimum muscle stimulation sites for enhancement of vascular hemodynamic parameters have not been identified. METHODS: Seven suitable anatomic sites were identified within the right leg. Twelve healthy participants were recruited (mean age, 23.1 ± 3 years; body mass index, 23.1 ± 3 kg/m(2)). Muscles were stimulated by transcutaneous bipolar electrodes at a current twice their motor threshold, at 1 Hz, for 5 minutes. Hemodynamic ultrasound measurements were taken from the right femoral vein. Laser Doppler measurements from the feet of the stimulated and nonstimulated sides were obtained. Baseline measurements were compared with readings after 5 minutes of stimulation, with device active. Discomfort experienced for stimulation of each muscle was rated out of 100. RESULTS: Hemodynamic changes displayed large intersubject variation, with no muscle statistically superior to the others. All muscles increased peak velocity; contraction of medial gastrocnemius increased time-averaged maximum velocity and volume flow. All muscles increased foot fluximetry (P < .05). Discomfort correlated weakly with current applied. Tibialis anterior and vastus lateralis were most tenable. CONCLUSIONS: Transcutaneous stimulation increases hemodynamic parameters significantly, locally and systemically. No optimum stimulation site has been identified, and it is limited by comfort and variability in the subject's response. Gastrocnemius, tibialis anterior, and vastus lateralis all provoke large changes in hemodynamic parameters, but clinical efficacy in disease prevention and management has not been explored

    Asymptotic scaling of the gluon propagtor on the lattice

    Get PDF
    We pursue the study of the high energy behaviour of the gluon propagator on the lattice in the Landau gauge in the flavorless case (n_f=0). It was shown in a precedin g paper that the gluon propagator did not reach three-loop asymptotic scaling at an energy scale as high as 5 GeV. Our present high statistics analysis includes also a simulation at ÎČ=6.8\beta=6.8 (a≃0.03a\simeq 0.03 fm), which allows to reach Ό≃10\mu \simeq 10 GeV. Special care has been devoted to the finite lattice-spacing artifacts as well as to the finite volume effects, the latter being acute at ÎČ=6.8\beta=6.8 where the volume is bounded by technical limits. Our main conclusion is a strong evidence that the gluon propagator has reached three-loop asymptotic scaling, at ÎŒ\mu ranging from 5.6 GeV to 9.5 GeV. We buttress up this conclusion on several demanding criteria of asymptoticity, including scheme independence. Our fit in the 5.6 GeV to 9.5 GeV window yields ΛMSˉ=319±14−20+10\Lambda^{\bar{{\rm MS}}} = 319 \pm 14 ^{+10}_{-20} MeV, in good agreement with our previous result, ΛMSˉ=295±20\Lambda^{\bar{{\rm MS}}} = 295 \pm 20 MeV, obtained from the three gluon vertex, but it is significantly above the Schr\"odinger functional method estimate : 238±19238 \pm 19 MeV. The latter difference is not understood. Confirming our previous paper, we show that a fourth loop is necessary to fit the whole (2.8Ă·9.52.8 \div 9.5) GeV energy window.Comment: latex-file, 19 pgs., 6 fig

    Approximation of the acoustic radiation impedance of a cylindrical pipe

    Full text link
    Useful approximation formulae for radiation impedance are given for the reflection coefficients of both infinitely flanged and unflanged rigid-walled cylindrical ducts. The expressions guarantee that simple but necessary physical and mathematical principles are met, like hermitian symmetry for the reflection coefficient (identical behaviour of positive and negative frequencies) and causality for the impulse response. A non causal but more accurate expression is also proposed that is suitable for frequency-domain applications. The formulae are obtained by analytical and numerical fitting to reference results from Levine & Schwinger for the unflanged case and extracted from the radiation impedance matrix given by Zorumski for the infinite flanged case.Comment: Journal of Sound and Vibration (2008) accepte

    O.P.E. and Power Corrections to the QCD coupling constant

    Get PDF
    Lattice data seems to show that power corrections should be convoked to describe appropriately the transition of the QCD coupling constant running from U.V. to I.R. domains. Those power corrections for the Landau-gauge MOM coupling constant in a pure Yang-Mills theory (N_f=0) are analysed in terms of Operator Product Expansion (O.P.E.) of two- and three-point Green functions, the gluon condensate emerging from this study. The semi-classical picture given by instantons can be also used to look for into the nature of the power corrections and gluon condensate.Comment: 5 pages, talk given at XXX International Meeting on Fundamental Physics, Jaca 200

    Exponential splitting of bound states in a waveguide with a pair of distant windows

    Full text link
    We consider Laplacian in a straight planar strip with Dirichlet boundary which has two Neumann ``windows'' of the same length the centers of which are 2l2l apart, and study the asymptotic behaviour of the discrete spectrum as l→∞l\to\infty. It is shown that there are pairs of eigenvalues around each isolated eigenvalue of a single-window strip and their distances vanish exponentially in the limit l→∞l\to\infty. We derive an asymptotic expansion also in the case where a single window gives rise to a threshold resonance which the presence of the other window turns into a single isolated eigenvalue

    Beating of monopole modes in nuclear dynamics

    Get PDF
    Time-dependent Hartree-Fock simulations of the evolution of excited gold fragments have been performed. The observed dynamics appears more complex than the collective expansion picture. The minimum density is often not reached during the first density oscillation because of the beating of several collective compression modes.Comment: 14 Latex pages including 4 figures. Nucl. Phys. A (in press
    • 

    corecore