14 research outputs found

    Testing and healthcare seeking behavior preceding HIV diagnosis among migrant and non-migrant individuals living in the Netherlands: Directions for early-case finding

    Get PDF
    OBJECTIVES: To assess differences in socio-demographics, HIV testing and healthcare seeking behavior between individuals diagnosed late and those diagnosed early after HIV-acquisition. DESIGN: Cross-sectional study among recently HIV-diagnosed migrant and non-migrant individuals living in the Netherlands. METHODS: Participants self-completed a questionnaire on socio-demographics, HIV-testing and healthcare seeking behavior preceding HIV diagnosis between 2013-2015. Using multivariable logistic regression, socio-demographic determinants of late diagnosis were explored. Variables on HIV-infection, testing and access to care preceding HIV diagnosis were compared between those diagnosed early and those diagnosed late using descriptive statistics. RESULTS: We included 143 individuals with early and 101 with late diagnosis, of whom respectively 59/143 (41%) and 54/101 (53%) were migrants. Late diagnosis was significantly associated with older age and being heterosexual. Before HIV diagnosis, 89% of those with early and 62% of those with late diagnosis had ever been tested for HIV-infection (p<0.001), and respectively 99% and 97% reported healthcare usage in the Netherlands in the two years preceding HIV diagnosis (p = 0.79). Individuals diagnosed late most frequently visited a general practitioner (72%) or dentist (62%), and 20% had been hospitalized preceding diagnosis. In these settings, only in respectively 20%, 2%, and 6% HIV-testing was discussed. CONCLUSION: A large proportion of people diagnosed late had previously tested for HIV and had high levels of healthcare usage. For earlier-case finding of HIV it therefore seems feasible to successfully roll out interventions within the existing healthcare system. Simultaneously, efforts should be made to encourage future repeated or routine HIV testing among individuals whenever they undergo an HIV test

    Utilization of acute and long-term care in the last year of life: comparison with survivors in a population-based study

    Get PDF
    Background. It is well-known that the use of care services is most intensive in the last phase of life. However, so far only a few determinants of end-of-life care utilization are known. The aims of this study were to describe the utilization of acute and long-term care among older adults in their last year of life as compared to those not in their last year of life, and to examine which of a broad range of determinants can account for observed differences in care utilization. Methods. Data were used from the Longitudinal Aging Study Amsterdam (LASA). In a random, age and sex stratified population-based cohort of 3107 persons aged 55 ? 85 years at baseline and representative of the Netherlands, follow-up cycles took place at 3, 6 and 9 years. Those who died within one year directly after a cycle were defined as the "end-of-life group" (n = 262), and those who survived at least three years after a cycle were defined as the "survivors". Utilization of acute and long-term care services, including professional and informal care, were recorded at each cycle, as well as a broad range of health-related and psychosocial variables. Results. The end-of-life group used more care than the survivors. In the younger-old this difference was most pronounced for acute care, and in the older-old, for long-term care. Use of both acute and long-term home care in the last year of life was fully accounted for by health problems. Use of institutional care at the end of life was partly accounted for by health problems, but was not fully explained by the determinants included. Conclusion. This study shows that severity of health problems are decisive in the explanation of the increase in use of care services towards the end-of-life. This information is essential for an appropriate allocation of professional health care to the benefit of older persons themselves and their informal caregivers. © 2009 Pot et al; licensee BioMed Central Ltd

    Data analysis issues for allele-specific expression using Illumina's GoldenGate assay.

    Get PDF
    BACKGROUND: High-throughput measurement of allele-specific expression (ASE) is a relatively new and exciting application area for array-based technologies. In this paper, we explore several data sets which make use of Illumina's GoldenGate BeadArray technology to measure ASE. This platform exploits coding SNPs to obtain relative expression measurements for alleles at approximately 1500 positions in the genome. RESULTS: We analyze data from a mixture experiment where genomic DNA samples from pairs of individuals of known genotypes are pooled to create allelic imbalances at varying levels for the majority of SNPs on the array. We observe that GoldenGate has less sensitivity at detecting subtle allelic imbalances (around 1.3 fold) compared to extreme imbalances, and note the benefit of applying local background correction to the data. Analysis of data from a dye-swap control experiment allowed us to quantify dye-bias, which can be reduced considerably by careful normalization. The need to filter the data before carrying out further downstream analysis to remove non-responding probes, which show either weak, or non-specific signal for each allele, was also demonstrated. Throughout this paper, we find that a linear model analysis of the data from each SNP is a flexible modelling strategy that allows for testing of allelic imbalances in each sample when replicate hybridizations are available. CONCLUSIONS: Our analysis shows that local background correction carried out by Illumina's software, together with quantile normalization of the red and green channels within each array, provides optimal performance in terms of false positive rates. In addition, we strongly encourage intensity-based filtering to remove SNPs which only measure non-specific signal. We anticipate that a similar analysis strategy will prove useful when quantifying ASE on Illumina's higher density Infinium BeadChips.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Efficient Allele-Specific Targeting of LRRK2 R1441 Mutations Mediated by RNAi

    Get PDF
    Since RNA interference (RNAi) has the potential to discriminate between single nucleotide changes, there is growing interest in the use of RNAi as a promising therapeutical approach to target dominant disease-associated alleles. Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been linked to dominantly inherited Parkinson's disease (PD). We focused on three LRRK2 mutations (R1441G/C and the more prevalent G2109S) hoping to identify shRNAs that would both recognize and efficiently silence the mutated alleles preferentially over the wild-type alleles. Using a luciferase-based reporter system, we identified shRNAs that were able to specifically target the R1441G and R1441C alleles with 80% silencing efficiency. The same shRNAs were able to silence specifically mRNAs encoding either partial or full-length mutant LRRK2 fusion proteins, while having a minimal effect on endogenous wild-type LRRK2 expression when transfected in 293FT cells. Shifting of the mutant recognition site (MRS) from position 11 to other sites (4 and 16, within the 19-mer window of our shRNA design) reduced specificity and overall silencing efficiency. Developing an allele-specific RNAi of G2019S was problematic. Placement of the MRS at position 10 resulted in efficient silencing of reporters (75–80%), but failed to discriminate between mutant and wild-type alleles. Shifting of the MRS to positions 4, 5, 15, 16 increased the specificity of the shRNAs, but reduced the overall silencing efficiency. Consistent with previous reports, these data confirm that MRS placement influences both allele-specificity and silencing strength of shRNAs, while further modification to hairpin design or MRS position may lead to the development of effective G2019S shRNAs. In summary, the effective shRNA against LRRK2 R1441 alleles described herein suggests that RNAi-based therapy of inherited Parkinson's disease is a viable approach towards developing effective therapeutic interventions for this serious neurodegenerative disease

    Allele-Specific Knockdown of ALS-Associated Mutant TDP-43 in Neural Stem Cells Derived from Induced Pluripotent Stem Cells

    Get PDF
    TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations are found in the glycine-rich domain, including the variant M337V, which is one of the most common mutations in TDP-43. In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool, we designed and screened a set of siRNAs that specifically target TDP-43(M337V) mutation. Two siRNA specifically silenced the M337V mutation in HEK293T cells transfected with GFP-TDP-43(wt) or GFP-TDP-43(M337V) or TDP-43 C-terminal fragments counterparts. C-terminal TDP-43 transfected cells show an increase of cytosolic inclusions, which are decreased after allele-specific siRNA in M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs) derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43 compared to the control. Following transfection with the allele-specific siRNA, cytosolic TDP-43 was reduced by 30% compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target the TDP-43(M337V) allele in mammalian and patient cells, thus demonstrating the potential for using RNA interference as a therapeutic tool for ALS
    corecore