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Abstract

TDP-43 is found in cytoplasmic inclusions in 95% of amyotrophic lateral sclerosis (ALS) and 60% of frontotemporal lobar
degeneration (FTLD). Approximately 4% of familial ALS is caused by mutations in TDP-43. The majority of these mutations
are found in the glycine-rich domain, including the variant M337V, which is one of the most common mutations in TDP-43.
In order to investigate the use of allele-specific RNA interference (RNAi) as a potential therapeutic tool, we designed and
screened a set of siRNAs that specifically target TDP-43M337V mutation. Two siRNA specifically silenced the M337V mutation
in HEK293T cells transfected with GFP-TDP-43wt or GFP-TDP-43M337V or TDP-43 C-terminal fragments counterparts. C-
terminal TDP-43 transfected cells show an increase of cytosolic inclusions, which are decreased after allele-specific siRNA in
M337V cells. We then investigated the effects of one of these allele-specific siRNAs in induced pluripotent stem cells (iPSCs)
derived from an ALS patient carrying the M337V mutation. These lines showed a two-fold increase in cytosolic TDP-43
compared to the control. Following transfection with the allele-specific siRNA, cytosolic TDP-43 was reduced by 30%
compared to cells transfected with a scrambled siRNA. We conclude that RNA interference can be used to selectively target
the TDP-43M337V allele in mammalian and patient cells, thus demonstrating the potential for using RNA interference as a
therapeutic tool for ALS.
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Introduction

The TDP-43 proteinopathies are a group of diseases with

overlapping clinicopathological features including amyotrophic

lateral sclerosis (ALS) and frontotemporal lobar degeneration with

TAR DNA-binding protein (TDP-43) inclusions (FTLD-TDP).

The common hallmark of TDP-43 proteinopathies is the

formation of phosphorylated, ubiquitinated and detergent-insolu-

ble TDP-43 in the cytoplasm of motor neurons. In addition,

cleavage of TDP-43 within the C-terminus produces lower

molecular weight species of 35 and 25 kDa [1,2].

TDP-43 is a DNA/RNA binding protein of 43 kDa mainly

localized in the nucleus, and has been implicated in transcriptional

repression, pre-mRNA splicing and translational regulation

[3,4,5]. In cell culture, overexpressed full length TDP-43 is

localized mainly in the nucleus, whereas C-terminal fragments

containing RNA recognition motif 2 (RRM2) and the glycine-rich

domain are localized both in the nucleus and cytoplasm with

formation of ubiquitinated inclusions in the latter compartment

[6,7,8,9,10]. Recent studies have shown that the TDP-43 C-

terminal fragments are prone to aggregation and may serve as a

seed to facilitate aggregation of full-length TDP-43 [10].

Mutations in TDP-43 have been identified in familial and

sporadic cases of ALS and FTLD-TDP, mainly in the C-terminal

glycine-rich region, including the M337V mutation caused by an

alteration of an adenine (A) to guanine (G) at position 1009 of

TARDBP cDNA [3,11,12,13,14,15,16]. In a recent study using

isogenic lines, mutant forms of TDP-43 were reported to be more

stable than wild-type which was degraded two to four times faster

than mutant TDP-43 [17]. Furthermore, mature motor neurons

and neural stem cells (NSCs) derived from induced pluripotent

stem cell (iPSC) lines from a patient carrying the M337V mutation

showed higher levels of soluble and insoluble TDP-43 compared to

controls. Given that overexpression of wild-type TDP-43 is toxic in

a wide range of animal models [18,19], the toxicity of mutant

TDP-43 may be underpinned by its accumulation.

Regardless of the mechanism by which mutant TDP-43 exerts

toxicity, selectively reducing expression of the mutant protein,
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while maintaining expression of wild-type TDP-43, is an attractive

therapeutic strategy. One way to target the mutant allele in

familial cases is using effective allele-specific small interference

RNAs (siRNAs); an approach which has been already described in

several autosomal dominant diseases such as Parkinson’s disease

[20], Alzheimer’s Disease [21,22] and Huntington’s disease

[23,24,25]. In ALS, silencing of a mutant superoxide dismutase

1 (SOD1) allele has been successfully achieved using siRNA and

short hairpin RNA (shRNA) in cells and in animal models of ALS.

It was shown that injection of shRNA delays ALS onset and

extends survival in animal models [26,27,28,29,30].

To determine the effects of allele-specific siRNA as a potential

therapeutic tool for familial ALS with mutation in TDP-43, we

generated siRNAs specifically targeting the M337V mutant allele.

These siRNAs were initially validated in HEK293T cells

overexpressing full length GFP-TDP-43wt or M337V, and subse-

quently analysed in iPSC-derived cells.

Here we show for the first time that allele-specific siRNA

decreases levels of mutant protein produced from the M337V

allele, in NSCs derived from iPSCs from an ALS patient.

Materials and Methods

All participants provided their written signed consent to donate

their skin sample to derive iPSCs and this study was approved by

the Ethics committee from the King’s College Hospital, a National

MREC (ethics ref. 10/S1103/10).

Plasmids and siRNA
Full length TDP-43 cDNA was used as a PCR template to

generate full length TDP-43, which was tagged with N-terminal

green fluorescent protein (GFP) by subcloning into EGFP-C1

(Clontech Laboratories Inc, Mountain View, USA). The C-

terminal GFP-TDP-43 constructs encompassing the amino acids

181–414 containing the RNA recognition motif 2 (RRM2) and the

glycine-rich domain were amplified using the full length GFP-

TDP-43 as a template and subcloned into EGFP-C1 vector. The

mutant M337V counterparts were obtained by QuikChange site-

directed mutagenesis of these constructs following manufacturer’s

instructions (Agilent technologies Inc, Santa Clara, USA). All

plasmids were sequence-verified.

Human siRNAs were obtained from Invitrogen (Carlsbad,

USA), which target the endogenous TDP-43 (named here as

siTDP-43; Invitrogen Stealth). Scrambled non-targeting sequence

was obtained from Invitrogen (named as sic; Invitrogen Stealth,

low GC content).

Five perfectly matched or single/multiple nucleotide mis-

matched siRNAs were designed to silence the M337V mutation

with a single mismatch at position 9 (M9); 3 (M3); or 17 (M17);

double mismatches at positions 8 and 9 (M89); and multiple

mismatches at positions 5, 7, 10 and 16 (M5U) (Fig. 1). Allele-

specific siRNAs were obtained from Eurogentec S.A. (Liège,

Belgium) and from Invitrogen.

Cell culture and transfection
All reagents used for cell culture were obtained from Invitrogen

unless otherwise stated.

HEK293T cells
HEK293T cells were cultured in DMEM high glucose with

Glutamax, 100 U/mLpenicillin/100 mg/mL streptomycin and

10% foetal bovine serum. Cells were transfected with Lipofecta-

mine siRNA Max following manufacturer’s instructions. Initial

allele-specific screening by western blot analysis was performed co-

transfecting 800 ng of GFP-TDP-43wt or GFP-TDP-43M337V (full

length) and 50 nM allele-specific siRNA. 5 nM of siRNA targeting

endogenous TDP-43 (siTDP) and non-targeting siRNA (sic) were

transfected into cells as experimental controls. Cells were analysed

48 hours post-transfection.

Stable, tetracycline-inducible clonal cell lines were generated in

T-REx HEK293, cells (#R710-07, Invitrogen) using the T-REx

system. Briefly, stable clonal lines transfected with pcDNA6/TR

(constitutively expressed Tet-repressor) were transfected with

pDEST30 HA-TDP-43 constructs using Lipofectamine 2000,

selected using 600 mg/mL geneticin, and clonally isolated. Stable

HEK293 lines were maintained as per HEK293T cells, but using

Tet-free foetal bovine serum. All cells were maintained at 37uC,

5% CO2.

Neural stem cells
Induced pluripotent stem cells were derived from one ALS

patient carrying the M337V mutation and one normal control as

previously characterized [31]. Cells were cultured feeder-free on

matrigel-coated flasks with mTeSR1 (STEMCELL technologies,

Vancouver, USA).

iPSCs were differentiated into neural stem cells (NSCs) as

described elsewhere before differentiating into neurons [32].

Briefly, iPSCs were plated at 30–40% confluence in neural

induction medium containing Advanced DMEM/F12:Neurobasal

(1:1), 100 U/mL penicillin/100 mg/mL streptomycin, 1% L-

glutamine, 16N2, 16B27, 5 mg/mL BSA (Europa Bio-products,

Cambridge, UK), 10 ng/mL hLIF (Millipore, Billerica, MA,

USA), 3 mM CHIR99021 (BioVision technology Inc, San

Francisco, USA), 2 mM SB431542 (Activin Inhibitor, Tocris

Biosciences, Bristol, UK) and 0.1 mM Gamma Secretase Inhibitor

XXI, Compound E (Merck Chemicals, Ltd, Darmstadt, Germany)

for 7 days. Cells were split with TrypLE Express and plated adding

10 mM ROCK inhibitor, Y-27632 (Merck Chemicals, Ltd) to

enhance cell survival for the initial passages. Compound E was

withdrawn after seven days in culture and cells were maintained in

the same medium until neuronal differentiation.

Once the allele-specific siRNAs were validated in HEK293T

cells, we selected the most efficient siRNA (siM9) to test in NSCs.

Pepmute transfection reagent (SignaGen laboratories, Gaithers-

burg, USA) was used for transfecting NSCs following manufac-

turer’s instructions. We used 50 nM of allele-specific siM9, 5 nM

siTDP or 5 nM of sic and analysed cells by immunofluorescence

and/or western blot.

Western blot and densitometry analyses
Cell lysates were obtained by lysing cells with cold Radio-

Immunoprecipitation Assay (RIPA) buffer (150 mM sodium

chloride, 1.0% NP-40 or Triton X-100, 0.5% sodium deoxycho-

late, 0.1% SDS (sodium dodecyl sulphate), 50 mM Tris, pH 8.0),

incubating on ice for 20 minutes and centrifuging at 14 000 rpm

for 30 minutes. Supernatants were mixed with 26 SDS buffer

(20% glycerol, 4% SDS, 100 mM Tris pH 6.8, 0.002% Bromo-

phenol blue, 100 mM dithiothreitol) and boiled for 10 minutes,

constituting the soluble fraction. Protein concentration was

determined by Bio-Rad DC Protein Assay (Hemel Hempstead,

UK).

Approximately 10 mg of homogenates were loaded into pre-cast

gels (NuPAGE Novex 10% Bis Tris, Invitrogen) and transferred to

nitrocellulose membrane using iBlot (Invitrogen). The membranes

were blocked with 5% non-fat dry milk for at least one hour at

room temperature and incubated with primary antibody overnight

at 4uC. Membranes were washed with 1% Tween-20 TBS (TBST)

and incubated with fluorescent secondary antibody (Thermo

Allele-Specific Knockdown in Motor Neuron Disease
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Fisher Scientific Inc, Waltham, MA, USA) in 0.01% SDS-TBS

buffer for one hour at room temperature protected from light.

After serial washes with TBS buffer, membranes were scanned

using the Odyssey Imaging System (Li-Cor Biosciences, Cam-

bridge, UK). Membranes were scanned, avoiding saturation of the

bands, and quantified using ImageJ (version 1.45e, NIH, Bethesda,

USA, http://rsb.info.nih.gov/ij/). Densitometry and statistical

analyses were performed using One-way ANOVA with Bonferroni

post-hoc test or Student’s t-test using GraphPad Prism 5.03

(GraphPad Software, San Diego, USA). All antibodies were

purchased from Sigma-Aldrich unless stated otherwise (Dorset,

UK). The antibodies used in western blot were: polyclonal anti-

TDP-43 antibody (1:5 000, ProteinTech Group, Chicago, USA),

monoclonal anti HA (1:10 000), monoclonal anti GFP (1:1 000),

monoclonal anti GAPDH (1:5 000) and polyclonal anti-histone 3

as a loading control marker (1:20 000).

Immunofluorescence
After transfection with siRNAs, NSCs were rinsed with PBS and

fixed with 4% paraformaldehyde for 15 minutes at room

temperature. Cells were permeabilized with 0.25% Triton-X

100 for 15 minutes at room temperature and blocked with 10%

normal donkey serum for one hour. Cells were incubated with

primary antibody diluted in 5% normal donkey serum at 4uC
overnight. After serial washes with PBS, cells were incubated with

secondary antibody for one hour at room temperature, rinsed with

PBS and stained with 1.25 mg/ml DAPI (Sigma) for 1–2 minutes

at room temperature. Coverslips were mounted using DAKO

mounting medium (Dako, Glostrup, Denmark) onto fluorescent

microscope slides (Fisher Scientific, Waltham, MA, USA).

Antibodies used for immunostaining were: polyclonal HA

(1:100, Cell Signaling Technology); polyclonal TDP-43 (1:300,

ProteinTech Group); monoclonal TDP-43 (1:300, Santa Cruz

Biotechnology, Inc, Santa Cruz, USA); polyclonal nestin (1:400,

Santa Cruz Biotechnology, Inc) and monoclonal b-III tubulin

(1:400, Sigma-Aldrich). Secondary antibodies were purchased

from Jackson ImmunoResearch Laboratories Inc. (West Grove,

PA, USA). Cell images were acquired using a Zeiss Axiovert S100

(HB0100) (Carl Zeiss Ltd., Hertfordshire, UK) inverted micro-

scope, a Zeiss LSM 510 META confocal laser scanning

microscope and an InCell Analyser 1000 (for aggregation analysis,

described below).

Figure 1. Allele-specific siRNAs targeting TDP-43M337V mutant allele. A. Schematic representation of TDP-43 protein containing two RNA-
recognition motifs (RRM1 and RRM2), a bipartite nuclear localization signal (NLS), a nuclear export signal (NES) and a glycine-rich domain in the
carboxy-terminal. The M337V mutation localization is indicated. Five allele-specific siRNAs were designed to contain mismatches at positions 9 (M9), 3
(M3), or 17 (M17); double mismatches at positions 8 and 9 (M8-9) or multiple mismatches at positions 5, 7, 10 and 16 (M5U). B. Representative
western blot image showing the effects of allele-specific siRNA on cells transfected with GFP-TDP-43wt and GFP-TDP-43M337V. The allele-specific siM9
reduces the levels of GFP-TDP-43M337V specifically whereas GFP-TDP-43wt levels remain unchanged. FLAG-tagged protein was used as a control for
transfection efficiency. C. Densitometry analysis of relative GFP-TDP-43 normalised to GAPDH. Mean from three independent experiments. Error bars
represent standard error of the mean (SEM). (One way ANOVA, * P,0.05; *** P,0.001).
doi:10.1371/journal.pone.0091269.g001
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HEK293T aggregation analysis
HA-TDP-43 wt stable transfected HEK293T cells were

transiently transfected with C-terminal GFP-TDP-43wt or GFP-

TDP-43M337V and siRNAs for 48 hours, fixed and processed for

immunofluorescence as described. Images were acquired using an

InCell Analyser 1 000 (GE Healthcare, Little Chalfont, UK).

Quantification was carried out by counting an average of 315 cells

per image, in 25 images per treatment condition (5 sites each from

5 wells of a 96-well plate), for three independent experiments.

Cytoplasmic aggregates were counted using the previously

validated [33] Cell scoring module within the MetaMorph Image

System 7.5 (v. 7.7, Molecular Devices, Wokingham, UK), and data

were analysed using GraphPad Prism 5.03.

Total, nuclear and cytosolic TDP-43 quantification
TDP-43 and DAPI images of NSCs were acquired using

identical parameters across all cell lines and treatments, and

analysed with MetaMorph Image System. Quantification was

carried out by counting an average of 150 cells per image, in 7–10

images for each treatment condition, for three independent

experiments. Quantification of total and cytoplasmic TDP-43

was performed using journals written in-house (available

from ELS). These measured the staining which was above a

user-defined threshold, in the original image set (total TDP-43)

and in an image set where a binarized mask of the DAPI-stained

nuclear image was subtracted from the TDP-43 image (cytoplas-

mic TDP-43). Nuclear TDP staining was measured using the

Count Nuclei module with TDP-43-stained images. Values shown

are the average integrated intensities of staining per cell, with cell

counts performed using the Count Nuclei module with DAPI-

stained images.

RNA extraction and cDNA Synthesis
RNA was extracted from cells using the RNeasy Mini Kit

(Qiagen) following the manufacturer’s instructions followed by

DNase digestion. RNA was quantified on a microvolume

spectrophotometer (NanoDrop 2000, ThermoScientific) and the

quality and integrity was checked using a 1% agarose gel. Only

samples with an absorbance ratio at OD260/280 between 1.8 and

2.2, and OD260/230 at about 2.0 with clear 28S/18S bands and

no smears were processed for cDNA synthesis.

For cDNA synthesis, 150 ng of total RNA was transcribed with

the SuperScript III First-Strand Synthesis System (Life Technol-

ogies) in a 20 mL volume, following the manufacturer’s instruc-

tions. cDNAs were diluted to 12.5 ng/mL and stored at 220uC.

Figure 2. Allele-specific siRNA silences the mutant allele specifically and reduces cytoplasmic inclusions in HEK293 cells. A. HA-TDP-
43wt stably expressing HEK293 cells were co-transfected with C-terminal GFP-TDP-43wt or GFP-TDP-43M337V and siRNAs for 48 hours. Cells were fixed
and stained with HA antibody (red) and DAPI (blue). GFP-TDP-43 cytosolic and nuclear inclusions of different sizes were seen. C-terminal
GFP-TDP-43wt and GFP-TDP43M337V inclusions co-localized with full length HA-TDP-43wt (arrows), however some inclusions did not recruit full length
HA-TDP-43wt (arrowhead). Scale bars = 20 mm. B. Percentage of cells with GFP aggregates. siM9 reduced the number of cells with aggregates in GFP-
TDP-43M337V – expressing cells. More than 70 000 cells were counted from three independent experiments. Error bars represent SEM (Student’s
T-test,*** P,0.001).
doi:10.1371/journal.pone.0091269.g002
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Transcription analysis by Real-time PCR
The real-time PCRs were performed on a MicroAmp Optical

384-well reaction plate with barcode covered with MicroAmp

Optical Adhesive Film (Applied Biosystems). Reactions were

manually assembled and contained 0.5 mL of Taqman Gene

Expression Assay (Hs00606522, Applied Biosystems), 5 mL of

Taqman Gene Expression Master Mix (Applied Biosystems), 2 mL

of diluted cDNA and 2.5 mL of nuclease-free water (Ambion).

Concurrently, housekeeping endogenous control glyceraldehyde-

3-phosphate dehydrogenase (GAPDH) was assayed for each

individual sample for normalisation purposes. The PCR profile

was: 2 minutes at 50uC, 10 minutes at 95uC, followed by 40 cycles

of 15 seconds at 95uC and 1 minute at 60uC. Negative controls

(no template cDNA and blank) were included in all assays. RT-

PCRs were performed with two biological replicates and three

technical replicates of each cDNA sample in the ABI7900HT

sequence detection system. On completion of RT-PCR, Ct values

were generated using SDS 2.3 software.

The relative level of expression (RQ) for TARDBP was

calculated based on the formula RQ = 22DCt. Each Ct value

represents the mean of three values were discarded if they were not

within 0.25 standard deviation of the mean. DDCt equals to

Figure 3. Generation of neural stem cells from iPSC lines. A. iPSCs are differentiated into neural stem cells (NSCs) using small molecules for 10
days. At this stage these cells are nestin positive (neuroprecursor marker) and can be further differentiated into neurons after treatment with 1 mM of
retinoic acid for 14 days. Neurons are positive for b-III tubulin, which is a neuronal marker. Scale bars = 20 mm. B. iPSCs from an ALS patient with
M337V mutation and control were differentiated into NSCs and immunostained with TDP-43 antibody. A representative confocal image of TDP-43
immunostaining shows an increase of cytoplasmic TDP-43 in M337V NPCs. C. Densitometry quantification of cytoplasmic TDP-43 normalised to the
control (n = 3 independent experiments. *** P,0.001).
doi:10.1371/journal.pone.0091269.g003
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CtTARDBP – CtGAPDH. The relative level of expression of each

sample was normalised to the DCt of control NSCs treated with

sic.

Results and Discussion

In recent years, the identification of TDP-43 as a major

component of cytoplasmic, detergent-resistant inclusions in ALS

and FTLD has opened new areas of research aiming to

understand the pathological mechanisms of these diseases.

In order to investigate if an allele-specific siRNA can reduce the

expression of TDP-43 mutant allele as a form of therapy; we

designed five allele-specific siRNAs containing 19 nucleotides,

targeting the M337V mutation. Early studies on the RNAi

pathway showed that contiguity at the centre of siRNA is crucial to

target recognition and cleavage, since mismatch abolished the

RNAi effect and tended to occur at the centre of the siRNA

structure [34,35]. Therefore, the position of the altered nucleotide

in the siRNA is important to discriminate the mutant from the

wild-type alleles. Allele-specific siRNAs targeting different regions

of the same transcript display differences in the efficiency of

silencing, therefore we designed siRNAs where the mutated

nucleotide G position varies within the siRNA structure (Fig. 1A).

The allele-specific siRNAs-M9, M3 and M17 are perfectly

matched with the mutant allele but have a single mismatch with

the wild-type counterpart. However, it is likely that not all single

mismatches would create silencing selectivity and some mismatch-

es might be tolerated by the RISC complex; compromising the

allele-specificity. For this reason, we designed siRNAs with more

Figure 4. Allele-specific knockdown of M337V allele on neural stem cells. A. NSCs were transfected with allele-specific siM9 and stained for
TDP-43. Images were acquired using identical parameters and analysed using Metamorph software. Representative confocal immunolabeling images
showing allele-specific M337V knockdown in M337V lines. The allele-specific siM9 reduces endogenous TDP-43M337V expression in all compartments
(cytosolic (B), nuclear (C) and total (D) TDP-43) (n = 3 independent experiments. ** P,0.01 and *** P,0.001).
doi:10.1371/journal.pone.0091269.g004
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Figure 5. Allele-specific siM9 decreases total TDP-43 transcripts and protein levels in neuralised cells. A. Representative Western blot
image showing M337V knockdown in M337V lines. B. Densitometry analysis of relative TDP-43 protein normalised to GAPDH. C. qPCR display
unchanged levels of total TDP-43 in the control lines transfected with siM9, whereas M337V lines showed a reduction. Error bars represent SEM (One
way ANOVA, * P,0.05, ** P,0.01, *** P,0.001).
doi:10.1371/journal.pone.0091269.g005
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than one mismatch with the wild-type allele. The siRNA-M8-9

contains a double mismatch with the wild-type at positions 8 (sense

strand G.C) and at position 9 (the mutation site), hence creating a

single mismatch with the mutant allele. Similarly, the siRNA-M5U

contains five mismatches (sense strand U.G) with the wild-type

and four mismatches with the mutant allele (Fig. 1A).

To determine if these allele-specific siRNAs specifically knock

down the M337V allele, HEK293T cells were transiently

transfected with full length GFP-TDP-43wt or GFP-TDP-

43M337V in combination with allele-specific siRNAs and analysed

by western blot. In order to exclude the possibility that co-

transfection with siRNA reduced the transfection efficiency of

GFP-TDP-43M337V we co-transfected a flag-tagged protein

(Fig. 1B). Two siRNAs showed a significant reduction in GFP-

TDP-43M337V protein levels (siM9 and siM17). Using the siRNA

with mismatch at position 9 (siM9), GFP-TDP-43M337V was

reduced by 78%, whereas the allele-specific RNA with a mismatch

at position 17 silenced GFP-TDP-43M337V by 25.6%. In contrast,

GFP-TDP-43wt levels remained unchanged by transfection with

any of the allele-specific siRNAs. Non-targeting siRNA control

(sic) and siRNA targeting the N-terminal region of TDP-43

(siTDP-43) were used as controls. As expected, siTDP-43 was able

to silence both GFP-TDP-43wt and GFP-TDP-43M337V, decreas-

ing their expression levels by approximately 50% (Fig. 1C).

Having determined that allele-specific siRNA can reduce

protein expression from the mutant allele specifically, we sought

to determine whether this RNAi approach could also reduce the

formation of cytosolic TDP-43 aggregates. HEK293T cells

transiently transfected to overexpress C-terminal fragments of

either GFP-TDP-43wt or GFP-TDP-43M337V form cytosolic and

occasionally nuclear aggregates (Figure 2A). In contrast, HEK293

stable cell lines expressing full-length HA-TDP-43wt at near

physiological levels do not form aggregates. Therefore, by

transiently transfecting C-terminal GFP-TDP-43 proteins into

HA-TDP-43 expressing cells, we were able to simultaneously

assess whether allele-specific knockdown altered the formation of

TDP-43M337V aggregates, and whether TDP-43 expression from

the other ‘allele’ was maintained.

We observed that after allele-specific siRNA transfection, GFP-

TDP-43M337V levels were reduced with a concomitant decrease in

detectable cytoplasmic inclusions (Fig. 2B). In addition, we

observed that HA-TDP-43wt remained unchanged, suggesting

that the allele-specific siM9 specifically reduces the mutant allele

(Figure 2A). The majority of the cytoplasmic inclusions of C-

terminal GFP-TDP showed recruitment of full length HA-

TDP43wt (Figure 2A, arrows); however some cellular aggregates

did not (arrowhead), suggesting the formation of different types of

cellular aggregates. Cells co-transfected with C-terminal GFP-

TDP-43wt and allele-specific siM9 did not show a statistical

significant reduction of cellular aggregates.

The HEK293T experiments showed that allele-specific RNAi

can selectively reduce GFP-TDP-43M337V, with concomitant

reduction in the formation of cytoplasmic aggregates.

To test whether allele-specific siRNA could decrease endoge-

nous TDP-43M337V levels in cells derived from patients, we

differentiated induced pluripotent stem cells (iPSCs) into neural

stem cells (NSCs) (Figure 3). NSCs are transfectable and express

the early neural stem cell marker nestin. Under stimulation with

retinoic acid, these cells can be differentiated into neurons, which

express the neuronal marker b-III tubulin (Fig. 3 A).

NSCs were stained with polyclonal TDP-43 antibody and DAPI

and were analysed by quantitative immunofluorescence using

Metamorph software (Figure 3B). Approximately 4 500 cells each

were counted for the M337V and control lines. The mutant

M337V lines showed approximately a two-fold increase in

cytoplasmic TDP-43 compared to the controls. Given the

importance of subcellular localisation to TDP-43 toxicity, we

decided to use an immunofluorescence assay to assess the impact

of allele-specific knockdown on nuclear and cytoplasmic TDP-43

levels in NSCs.

We transfected the control and M337V lines with sic, siTDP-43

and allele-specific siM9 and quantified TDP-43 levels in the

nuclear or cytoplasmic compartment. As expected, in both control

and M337V NSCs, TDP-43 levels (total, nuclear and cytoplasmic)

were unchanged when transfected with sic and reduced when

transfected with siTDP-43 (P,0.001). NSC M337V transfected with

the allele-specific siM9 showed a reduction of approximately 40%

in total TDP-43 (cytosolic+nuclear); 30% in cytosolic TDP-43 and

45% in nuclear TDP-43 compared to controls (Fig. 4A–D).

Similarly, qPCR and western blot analyses revealed a decrease in

the total levels of the endogenous TDP-43M337V, but not TDP-

43wt, when cells were transfected with allele-specific siRNA

(Fig. 5A–C).

TDP-43 has the ability to autoregulate its own protein levels.

TDP-43 protein binds to the 39 untranslated region (UTR) of TDP-

43 mRNA and promotes mRNA instability leading to reduced de

novo TDP-43 protein synthesis, which, in turn, leads to diminished

inhibition and increase in de novo synthesis [5,36]. Indeed,

heterozygous null TARDBP mouse models express normal levels

of TDP-43, indicating tightly controlled compensation following

loss of one allele [37,38,39]. Here, however, we demonstrate that

knockdown of mutant transcript (siM9) results in an overall decrease

in TDP-43 protein levels. Similarly, knockdown of wild-type TDP-

43 (siTDP) also reduces TDP-43 protein levels. These findings

suggest that there are limits to the extent to which autoregulation

can compensate for a loss of transcript, especially following RNA

interference. Furthermore, TDP-43 protein levels after allele-

specific knockdown approach basal levels in control cell lines,

suggesting this might represent a physiological ‘‘set-point’’, perhaps

reflecting full ribosome occupancy, ribosome density, or translation

rate of remaining wild-type transcripts. This is a promising finding,

which supports the siRNA approach to mitigating TDP-43

overexpression associated with patient mutation.

Together, these studies provide a proof of concept that allele-

specific siRNA can specifically silence mutant TDP-43M337V,

resulting in a decrease of both the full-length as well as C-terminal

fragments of mutant TDP-43 in mammalian cell lines. We have

also shown for the first time that an allele-specific siRNA can

reduce the expression of the endogenous mutant allele in

neuralised cells derived from iPSCs from a patient carrying the

M337V mutation.

RNA interference is a potential therapeutic tool to treat

autosomal dominant diseases; however we still have to learn what

the effects of chosen RNAis are in patients with TDP-43 mutation.

The knowledge that allele-specific RNA interference specifically

decreases expression of mutant TDP-43M337V has a great

implication for potential treatment of familial ALS.
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