962 research outputs found

    Successful endonasal dacryocystorhinostomy in a patient with Wegener’s granulomatosis

    Get PDF
    Wegener’s granulomatosis (WG) is one form of idiopathic autoimmune vasculitis. The disease has a predilection for the upper and lower respiratory tracts (lungs, nose, sinus), and kidneys. WG may be systemic, severe, and potentially lethal, but it may also be limited to the otolaryngological area or to the eyes and the orbits. Obstruction of the lacrimal pathway is a possible complication of the disease that affects approximately 7% of patients with WG. It usually occurs as a direct extension of sinonasal disease and typically is a late manifestation. Management of such a condition is generally viewed as difficult. We report the case of a patient with a quiescent WG limited to the otolaryngological area. This patient presented a bilateral obstruction of the nasolacrimal ducts caused by bilateral extensive adhesions in the nasal cavity. Because she had several episodes of left-side acute dacryocystitis which necessitated several courses of broad-spectrum antibiotics, she successfully underwent an endonasal endoscopic dacryocystorhinostomy using a diode laser and powered instrumentation. The authors describe the clinical case, the surgical technique, and review the literature

    Looking backward: From Euler to Riemann

    Full text link
    We survey the main ideas in the early history of the subjects on which Riemann worked and that led to some of his most important discoveries. The subjects discussed include the theory of functions of a complex variable, elliptic and Abelian integrals, the hypergeometric series, the zeta function, topology, differential geometry, integration, and the notion of space. We shall see that among Riemann's predecessors in all these fields, one name occupies a prominent place, this is Leonhard Euler. The final version of this paper will appear in the book \emph{From Riemann to differential geometry and relativity} (L. Ji, A. Papadopoulos and S. Yamada, ed.) Berlin: Springer, 2017

    The net effects of medical malpractice tort reform on health insurance losses: the Texas experience

    Get PDF
    In this paper, we examine the influence of medical malpractice tort reform on the level of private health insurance company losses incurred. We employ a natural experiment framework centered on a series of tort reform measures enacted in Texas in 2003 that drastically altered the medical malpractice environment in the state. The results of a difference-in-differences analysis using a variety of comparison states, as well as a difference-in-difference-in-differences analysis, indicate that ameliorating medical malpractice risk has little effect on health insurance losses incurred by private health insurers

    Nanoscale Dynamics of Phase Flipping in Water near its Hypothesized Liquid-Liquid Critical Point

    Get PDF
    Achieving a coherent understanding of the many thermodynamic and dynamic anomalies of water is among the most important unsolved puzzles in physics, chemistry, and biology. One hypothesized explanation imagines the existence of a line of first order phase transitions separating two liquid phases and terminating at a novel "liquid-liquid" critical point in a region of low temperature (T≈250KT \approx 250 \rm{K}) and high pressure (P≈200MPaP \approx 200 \rm{MPa}). Here we analyze a common model of water, the ST2 model, and find that the entire system flips between liquid states of high and low density. Further, we find that in the critical region crystallites melt on a time scale of nanoseconds. We perform a finite-size scaling analysis that accurately locates both the liquid-liquid coexistence line and its associated liquid-liquid critical point.Comment: 22 pages, 5 figure

    A Solvable Regime of Disorder and Interactions in Ballistic Nanostructures, Part I: Consequences for Coulomb Blockade

    Full text link
    We provide a framework for analyzing the problem of interacting electrons in a ballistic quantum dot with chaotic boundary conditions within an energy ETE_T (the Thouless energy) of the Fermi energy. Within this window we show that the interactions can be characterized by Landau Fermi liquid parameters. When gg, the dimensionless conductance of the dot, is large, we find that the disordered interacting problem can be solved in a saddle-point approximation which becomes exact as g→∞g\to\infty (as in a large-N theory). The infinite gg theory shows a transition to a strong-coupling phase characterized by the same order parameter as in the Pomeranchuk transition in clean systems (a spontaneous interaction-induced Fermi surface distortion), but smeared and pinned by disorder. At finite gg, the two phases and critical point evolve into three regimes in the um−1/gu_m-1/g plane -- weak- and strong-coupling regimes separated by crossover lines from a quantum-critical regime controlled by the quantum critical point. In the strong-coupling and quantum-critical regions, the quasiparticle acquires a width of the same order as the level spacing Δ\Delta within a few Δ\Delta's of the Fermi energy due to coupling to collective excitations. In the strong coupling regime if mm is odd, the dot will (if isolated) cross over from the orthogonal to unitary ensemble for an exponentially small external flux, or will (if strongly coupled to leads) break time-reversal symmetry spontaneously.Comment: 33 pages, 14 figures. Very minor changes. We have clarified that we are treating charge-channel instabilities in spinful systems, leaving spin-channel instabilities for future work. No substantive results are change

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
    • …
    corecore