271 research outputs found

    A close halo of large transparent grains around extreme red giant stars

    Full text link
    Intermediate-mass stars end their lives by ejecting the bulk of their envelope via a slow dense wind back into the interstellar medium, to form the next generation of stars and planets. Stellar pulsations are thought to elevate gas to an altitude cool enough for the condensation of dust, which is then accelerated by radiation pressure from starlight, entraining the gas and driving the wind. However accounting for the mass loss has been a problem due to the difficulty in observing tenuous gas and dust tens of milliarcseconds from the star, and there is accordingly no consensus on the way sufficient momentum is transferred from the starlight to the outflow. Here, we present spatially-resolved, multi-wavelength observations of circumstellar dust shells of three stars on the asymptotic giant branch of the HR diagram. When imaged in scattered light, dust shells were found at remarkably small radii (<~ 2 stellar radii) and with unexpectedly large grains (~300 nm radius). This proximity to the photosphere argues for dust species that are transparent to starlight and therefore resistant to sublimation by the intense radiation field. While transparency usually implies insufficient radiative pressure to drive a wind, the radiation field can accelerate these large grains via photon scattering rather than absorption - a plausible mass-loss mechanism for lower-amplitude pulsating stars.Comment: 13 pages, 1 table, 6 figure

    A systematic variation of the stellar initial mass function in early-type galaxies

    Get PDF
    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars. It depends on the stellar initial mass function (IMF) describing the distribution of stellar masses when the population formed. Consequently knowledge of the IMF is critical to virtually every aspect of galaxy evolution. More than half a century after the first IMF determination, no consensus has emerged on whether it is universal in different galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot be both universal, but they could not break the degeneracy between the two effects. Only recently indications were found that massive elliptical galaxies may not have the same IMF as our Milky Way. Here we report unambiguous evidence for a strong systematic variation of the IMF in early-type galaxies as a function of their stellar mass-to-light ratio, producing differences up to a factor of three in mass. This was inferred from detailed dynamical models of the two-dimensional stellar kinematics for the large Atlas3D representative sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass. Our finding indicates that the IMF depends intimately on a galaxy's formation history.Comment: 4 pages, 2 figures, LaTeX. Accepted for publication as a Nature Letter. More information about our Atlas3D project is available at http://purl.org/atlas3

    Smoking, respiratory symptoms and likely asthma in young people: evidence from postal questionnaire surveys in the Wythenshawe Community Asthma Project (WYCAP)

    Get PDF
    BACKGROUND: Although it is recognised that smoking is a major risk factor for subjects with chronic obstructive pulmonary disease and is associated with respiratory symptoms, there is less agreement concerning the relationship between asthma and smoking. This study aims to examine the relationship between cigarette smoking and asthma prevalence. METHOD: Data were used from two postal questionnaire surveys (1999 and 2001) in two general practice populations, using a respiratory questionnaire based on the ECRHQ and a generic quality of life questionnaire (EQ-5D). Only subjects less than 45 years old were included in the survey. An empirical definition of likely asthma was used based on respiratory questionnaire responses. Smoking was examined according to three categories, current smoker, ex smoker and never smoker. RESULTS: Almost 3500 subjects were included in the analyses. Current smokers had a higher prevalence of likely asthma compared to never smokers, odds ratio (OR) 1.59 (95% confidence interval (CI) 1.24 to 2.04). and also compared to ex smokers OR 1.79 (CI 1.25 to 2.56), but there was no difference between ex smokers and never smokers (OR 1.00 (0.75–1.35)). Current smoking was also positively associated with all symptoms but not with a history of hayfever/eczema. CONCLUSION: Although the positive association found between current smoking and obstructive airways disease is likely to be due to the effect of cigarettes on asthma, it could reflect an association with early COPD (GOLD stages 0 or 1). Smoking cessation has a beneficial effect on the prevalence of respiratory symptoms and is therefore of paramount importance among these young adults

    Impact of water management on methane emission dynamics in Sri Lankan paddy ecosystems

    Get PDF
    Paddy ecosystems constitute a dominant source of greenhouse gases, particularly of methane (CH₄), due to the continuous flooding (CF) practiced under conventional paddy cultivation. A new management method, namely alternative wetting and draining (AWD) (i.e., flooding whenever surface water levels decline to 15 cm below the soil surface), is an emerging practice developed to mitigate CH₄ emissions while providing an optimal solution for freshwater scarcity. Despite extensive paddy cultivation in Sri Lanka, no systematic research study has been conducted to investigate CH₄ emissions under different water management practices. Thus, field experiments were conducted in Sri Lanka to investigate the feedback of controlled water management on seasonal and diel variation of CH₄ emission, water consumption, and crop productivity. Adopting the same rice variety, two water management methods, continuous flooding (CF) and alternative wetting and draining (AWD), were compared with plants (W/P) and without plants (N/P) present. The emission of CH₄ was measured using the static closed chamber method. The results show a 32% reduction in cumulative CH₄ emission, on average, under AWD when compared to CF. The yield under the AWD was slightly higher than that of CF. Although it was not statistically significant (p > 0.05) there was not any reduction in yield in AWD than in CF. The total water saving under AWD ranged between 27–35% when compared to CF. Thus, the results support (without considering the effect of nitrous oxide) AWD as a promising method for mitigating CH₄ emissions while preserving freshwater and maintaining grain yield in paddy systems

    Transmembrane protein topology prediction using support vector machines

    Get PDF
    Background: Alpha-helical transmembrane (TM) proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated.Results: We present a support vector machine-based (SVM) TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from http://bioinf.cs.ucl.ac.uk/psipred/.Conclusion: The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins

    A prevalence of dynamo-generated magnetic fields in the cores of intermediate-mass stars

    Get PDF
    Magnetic fields play a part in almost all stages of stellar evolution. Most low-mass stars, including the Sun, show surface fields that are generated by dynamo processes in their convective envelopes. Intermediate-mass stars do not have deep convective envelopes, although 10 per cent exhibit strong surface fields that are presumed to be residuals from the star formation process. These stars do have convective cores that might produce internal magnetic fields, and these fields might survive into later stages of stellar evolution, but information has been limited by our inability to measure the fields below the stellar surface. Here we report the strength of dipolar oscillation modes for a sample of 3,600 red giant stars. About 20 per cent of our sample show mode suppression, by strong magnetic fields in the cores, but this fraction is a strong function of mass. Strong core fields occur only in red giants heavier than 1.1 solar masses, and the occurrence rate is at least 50 per cent for intermediate-mass stars (1.6–2.0 solar masses), indicating that powerful dynamos were very common in the previously convective cores of these stars

    Pragmatic application of a clinical prediction rule in primary care to identify patients with low back pain with a good prognosis following a brief spinal manipulation intervention

    Get PDF
    BACKGROUND: Patients with low back pain are frequently encountered in primary care. Although a specific diagnosis cannot be made for most patients, it is likely that sub-groups exist within the larger entity of nonspecific low back pain. One sub-group that has been identified is patients who respond rapidly to spinal manipulation. The purpose of this study was to examine the association between two factors (duration and distribution of symptoms) and prognosis following a spinal manipulation intervention. METHODS: Data were taken from two previously published studies. Patients with low back pain underwent a standardized examination, including assessment of duration of the current symptoms in days, and the distal-most distribution of symptoms. Based on prior research, patients with symptoms of <16 days duration and no symptoms distal to the knee were considered to have a good prognosis following manipulation. All patients underwent up to two sessions of spinal manipulation treatment and a range of motion exercise. Oswestry disability scores were recorded before and after treatment. If ≥ 50% improvement on the Oswestry was achieved, the intervention was considered a success. Sensitivity, specificity, and positive likelihood ratio were calculated for the association of the two criteria with the outcome of the treatment. RESULTS: 141 patients (49% female, mean age = 35.5 (± 11.1) years) participated. Mean pre- and post-treatment Oswestry scores were 41.9 (± 10.9) and 24.1 (± 14.2) respectively. Sixty-three subjects (45%) had successful treatment outcomes. The sensitivity of the two criteria was 0.56 (95% CI: 0.43, 0.67), specificity was 0.92 (95% CI: 0.84, 0.96), and the positive likelihood ratio was 7.2 (95% CI: 3.2, 16.1). CONCLUSION: The results of this study demonstrate that two factors; symptom duration of less than 16 days, and no symptoms extending distal to the knee, were associated with a good outcome with spinal manipulation

    Dual-functioning transcription factors in the developmental gene network of Drosophila melanogaster

    Get PDF
    Quantitative models for transcriptional regulation have shown great promise for advancing our understanding of the biological mechanisms underlying gene regulation. However, all of the models to date assume a transcription factor (TF) to have either activating or repressing function towards all the genes it is regulating.In this paper we demonstrate, on the example of the developmental gene network in D. melanogaster, that the data-fit can be improved by up to 40% if the model is allowing certain TFs to have dual function, that is, acting as activator for some genes and as repressor for others. We demonstrate that the improvement is not due to additional flexibility in the model but rather derived from the data itself. We also found no evidence for the involvement of other known site-specific TFs in regulating this network. Finally, we propose SUMOylation as a candidate biological mechanism allowing TFs to switch their role when a small ubiquitin-like modifier (SUMO) is covalently attached to the TF. We strengthen this hypothesis by demonstrating that the TFs predicted to have dual function also contain the known SUMO consensus motif, while TFs predicted to have only one role lack this motif.We argue that a SUMOylation-dependent mechanism allowing TFs to have dual function represents a promising area for further research and might be another step towards uncovering the biological mechanisms underlying transcriptional regulation

    Rapid Reactivation of Extralymphoid CD4 T Cells during Secondary Infection

    Get PDF
    After infection, extralymphoid tissues are enriched with effector and memory T cells of a highly activated phenotype. The capacity for rapid effector cytokine response from extralymphoid tissue-memory T cells suggests these cells may perform a ‘sentinel’ function in the tissue. While it has been demonstrated that extralymphoid CD4+ T cells can directly respond to secondary infection, little is known about how rapidly this response is initiated, and how early activation of T cells in the tissue may affect the innate response to infection. Here we use a mouse model of secondary heterosubtypic influenza infection to show that CD4+ T cells in the lung airways are reactivated within 24 hours of secondary challenge. Airway CD4+ T cells initiate an inflammatory cytokine and chemokine program that both alters the composition of the early innate response and contributes to the reduction of viral titers in the lung. These results show that, unlike a primary infection, extralymphoid tissue-memory CD4+ T cells respond alongside the innate response during secondary infection, thereby shaping the overall immune profile in the airways. These data provide new insights into the role of extralymphoid CD4+ T cells during secondary immune responses

    Protein kinase activity of phosphoinositide 3-kinase regulates cytokine-dependent cell survival

    Get PDF
    Extent: 14 p.The dual specificity protein/lipid kinase, phosphoinositide 3-kinase (PI3K), promotes growth factor-mediated cell survival and is frequently deregulated in cancer. However, in contrast to canonical lipid-kinase functions, the role of PI3K protein kinase activity in regulating cell survival is unknown. We have employed a novel approach to purify and pharmacologically profile protein kinases from primary human acute myeloid leukemia (AML) cells that phosphorylate serine residues in the cytoplasmic portion of cytokine receptors to promote hemopoietic cell survival. We have isolated a kinase activity that is able to directly phosphorylate Ser585 in the cytoplasmic domain of the interleukin 3 (IL-3) and granulocyte macrophage colony stimulating factor (GM-CSF) receptors and shown it to be PI3K. Physiological concentrations of cytokine in the picomolar range were sufficient for activating the protein kinase activity of PI3K leading to Ser585 phosphorylation and hemopoietic cell survival but did not activate PI3K lipid kinase signaling or promote proliferation. Blockade of PI3K lipid signaling by expression of the pleckstrin homology of Akt1 had no significant impact on the ability of picomolar concentrations of cytokine to promote hemopoietic cell survival. Furthermore, inducible expression of a mutant form of PI3K that is defective in lipid kinase activity but retains protein kinase activity was able to promote Ser585 phosphorylation and hemopoietic cell survival in the absence of cytokine. Blockade of p110α by RNA interference or multiple independent PI3K inhibitors not only blocked Ser585 phosphorylation in cytokine-dependent cells and primary human AML blasts, but also resulted in a block in survival signaling and cell death. Our findings demonstrate a new role for the protein kinase activity of PI3K in phosphorylating the cytoplasmic tail of the GM-CSF and IL-3 receptors to selectively regulate cell survival highlighting the importance of targeting such pathways in cancer.Daniel Thomas, Jason A. Powell, Benjamin D. Green, Emma F. Barry, Yuefang Ma, Joanna Woodcock, Stephen Fitter, Andrew C.W. Zannettino, Stuart M. Pitson, Timothy P. Hughes, Angel F. Lopez, Peter R. Shepherd, Andrew H. Wei, Paul G. Ekert and Mark A. Guthridg
    corecore