20 research outputs found

    Stochastic Modeling of B Lymphocyte Terminal Differentiation and Its Suppression by Dioxin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Upon antigen encounter, naïve B lymphocytes differentiate into antibody-secreting plasma cells. This humoral immune response is suppressed by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and other dioxin-like compounds, which belong to the family of aryl hydrocarbon receptor (AhR) agonists.</p> <p>Results</p> <p>To achieve a better understanding of the immunotoxicity of AhR agonists and their associated health risks, we have used computer simulations to study the behavior of the gene regulatory network underlying B cell terminal differentiation. The core of this network consists of two coupled double-negative feedback loops involving transcriptional repressors Bcl-6, Blimp-1, and Pax5. Bifurcation analysis indicates that the feedback network can constitute a bistable system with two mutually exclusive transcriptional profiles corresponding to naïve B cells and plasma cells. Although individual B cells switch to the plasma cell state in an all-or-none fashion when stimulated by the polyclonal activator lipopolysaccharide (LPS), stochastic fluctuations in gene expression make the switching event probabilistic, leading to heterogeneous differentiation response among individual B cells. Moreover, stochastic gene expression renders the dose-response behavior of a population of B cells substantially graded, a result that is consistent with experimental observations. The steepness of the dose response curve for the number of plasma cells formed vs. LPS dose, as evaluated by the apparent Hill coefficient, is found to be inversely correlated to the noise level in Blimp-1 gene expression. Simulations illustrate how, through AhR-mediated repression of the AP-1 protein, TCDD reduces the probability of LPS-stimulated B cell differentiation. Interestingly, stochastic simulations predict that TCDD may destabilize the plasma cell state, possibly leading to a reversal to the B cell phenotype.</p> <p>Conclusion</p> <p>Our results suggest that stochasticity in gene expression, which renders a graded response at the cell population level, may have been exploited by the immune system to launch humoral immune response of a magnitude appropriately tuned to the antigen dose. In addition to suppressing the initiation of the humoral immune response, dioxin-like compounds may also disrupt the maintenance of the acquired immunity.</p

    Inhibition of cyclooxygenase-2 impairs the expression of essential plasma cell transcription factors and human B-lymphocyte differentiation

    No full text
    Cyclooxygenase (Cox) inhibitors are among the most widely used and commonly prescribed medications. Relatively little is understood about their influence on human immune responses. Herein, we discovered a novel and important mechanism whereby non-steroidal anti-inflammatory drugs (NSAIDs) blunt human B-cell antibody production. We demonstrate that the Cox-2 selective small molecule inhibitors SC-58125 and NS-398 attenuate the production of human antibody isotypes including immunoglobulin M (IgM), IgG1, IgG2, IgG3 and IgG4. In addition, inhibition of Cox-2 significantly reduced the generation of CD38+ IgM+ and CD38+ IgG+ antibody-secreting cells. Interestingly, we discovered that inhibition of Cox-2 activity in normal human B cells severely reduced the messenger RNA and protein levels of the essential plasma cell transcription factor, Blimp-1. These observations were mirrored in Cox-2-deficient mice, which had reduced CD138+ plasma cells and a near loss of Blimp-1 expression. These new findings demonstrate a critical role for Cox-2 in the terminal differentiation of human B lymphocytes to antibody-secreting plasma cells. The use of NSAIDs may adversely influence the efficacy of vaccines, especially in the immunocompromised, elderly and when vaccines are weakly immunogenic

    Multidetector CT Features of Mesenteric Vein Thrombosis.

    No full text
    Mesenteric vein thrombosis (MVT) accounts for 5%-15% of all mesenteric ischemic events and is classified as either primary or secondary. Primary MVT is idiopathic, whereas secondary MVT can result from a variety of underlying diseases and risk factors, including primary hypercoagulable states or prothrombotic disorders, myeloproliferative neoplasms, cancer (most frequently of the pancreas or liver), diverse inflammatory conditions, recent surgery, portal hypertension, and miscellaneous causes such as oral contraceptives or pregnancy. Clinical symptoms of MVT are rather nonspecific and are mainly characterized by abdominal pain. The mortality rate for MVT remains high, since even now the diagnosis is often delayed. Multidetector computed tomography (CT) is the modality of choice in this context. Although venous bowel ischemia occurs only infrequently with MVT, radiologists should be familiar with its multidetector CT features. Familiarity with the possible causes of MVT, the underlying pathogenic mechanisms associated with MVT, and the correlation between multidetector CT features and these pathogenic mechanisms is necessary to optimize medical management and improve patient care. © RSNA, 2012

    Altered marginal zone and innate-like B cells in aged senescence-accelerated SAMP8 mice with defective IgG1 responses

    No full text
    11 páginas, 6 figuras. Contirne información suplementaia en: http://dx.doi.org/10.1038/cddis.2017.351Aging has a strong impact on the activity of the immune system, enhancing susceptibility to pathogens and provoking a predominant pre-inflammatory status, whereas dampening responses to vaccines in humans and mice. Here, we demonstrate a loss of marginal zone B lymphocytes (MZ, CD19+CD45R+CD21++CD23lo) and a decrease of naive B cells (CD19+IgD+), whereas there is an enhancement of a CD19+CD45Rlo innate-like B cell population (B1REL) and the so-called aged B cell compartment (ABC, CD45R+CD21loCD23loCD5-CD11b-) in aged senescence-accelerated (SAMP8) mice but not in aged senescence-resistant (SAMR1) mice. These changes in aged SAMP8 mice were associated with lower IgG isotype levels, displaying low variable gene usage repertoires of the immunoglobulin heavy chain (VH) diversity, with a diminution on IgG1-memory B cells (CD11b-Gr1-CD138-IgM-IgD-CD19+CD38+IgG1+), an increase in T follicular helper (TFH, CD4+CXCR5+PD1+) cell numbers, and an altered MOMA-1 (metallophilic macrophages) band in primary follicles. LPS-mediated IgG1 responses were impaired in the B1REL and ABC cell compartments, both in vitro and in vivo. These data demonstrate the prominent changes to different B cell populations and in structural follicle organization that occur upon aging in SAMP8 mice. These novel results raise new questions regarding the importance of the cellular distribution in the B cell layers, and their effector functions needed to mount a coordinated and effective humoral response.This work was supported by Acción Estratégica de Salud Carlos III (AESI), Grant PI14/0049 and Ministerio de Economía, Industria y Competitividad (MINECO), Grant SAF2015-70880-R, Grant SAF2015-70433-R and BFU 2013-42746.Peer reviewe
    corecore