140 research outputs found

    Major histocompatibility complex (MHC) class II-positive dendritic cells in the rat iris - In situ development from MHC class II-negative precursors

    Get PDF
    Purpose. To examine the postnatal development of major histocompatibility complex (MHC) class II-positive dendritic cells (DC) in the iris of the normal rat eye. Methods. Single-and double-color immunomorphologic studies were performed on whole mounts prepared from rat iris taken at selected postnatal ages (2 to 3 days to 78 weeks). Immunopositive cells were enumerated, using a quantitative light microscope, and MHC class II expression on individual cells was assessed by microdensitometric analysis. Results. Major histocompatibility class II-positive DCs in the iris developed in an age-dependent manner and reached adult-equivalent density and structure at approximately 10 weeks of age, considerably later than previously described in other DC populations in the rat. In contrast, the anti-rat DC monoclonal antibody OX62 revealed a population of cells present at adult-equivalent levels as early as 3 weeks after birth. Dual-color immunostaining and microdensitometric analysis demonstrated that during postnatal growth, development of the network of MHC class II-positive DCs was a consequence of the progressive increase in expression of MHC class II antigen by OX62-positive cells. Conclusions. During postnatal growth, the DC population of the iris develops initially as an OX62-positive-MHC class II-negative population, which then develops increasing MHC class II expression in situ and finally resembles classic DC populations in other tissue sites. Maturation of the iris DC population is temporally delayed compared with time to maturation in other tissue sites in the rat

    In Utero Exposure to Environmental Tobacco Smoke Potentiates Adult Responses to Allergen in BALB/c Mice

    Get PDF
    BACKGROUND: Fetal stress has been linked to adult atherosclerosis, obesity, and diabetes. Epidemiology studies have associated fetal exposure to maternal smoking and postnatal exposure to environmental tobacco smoke (ETS) with increased asthma risk. OBJECTIVE: We tested the hypothesis, in a mouse model of asthma, that in utero ETS exposure alters airway function and respiratory immune responses in adults. METHODS: Pregnant Balb/c mice were exposed daily to ETS or HEPA-filtered air (AIR). Offspring inhaled aerosolized ovalbumin (OVA) or saline in weeks 7–8. Regardless of whether they inhaled OVA or saline, mice were sensitized by OVA injections in weeks 11 and 13 followed by OVA aerosol challenge in weeks 14–15. At three time points, we assessed OVA-specific serum immunoglobins, bronchoalveolar lavage cells and cytokines, lung and nasal histopathology, and airway hyperresponsiveness (AHR). RESULTS: At 6 weeks, we found no significant differences between in utero ETS and AIR mice. At 10 weeks, following OVA aerosol, ETS mice displayed greater AHR than AIR mice (α = 0.05), unaccompanied by changes in histopathology, cytokine profile, or antibody levels. At 15 weeks, mice that had inhaled saline in weeks 7–8 developed airway inflammation: eosinophilia (α = 0.05), interleukin-5 (α = 0.05), and AHR (α = 0.05) were greater in ETS mice than in AIR mice. Mice that had inhaled OVA in weeks 7–8 demonstrated no airway inflammation after sensitization and challenge. CONCLUSION: In utero ETS exposure exacerbates subsequent adult responses to initial allergen exposure

    Cigarette smoke exposure facilitates allergic sensitization in mice

    Get PDF
    BACKGROUND: Active and passive smoking are considered as risk factors for asthma development. The mechanisms involved are currently unexplained. OBJECTIVE: The aim of this study was to determine if cigarette smoke exposure could facilitate primary allergic sensitization. METHODS: BALB/c mice were exposed to aerosolized ovalbumin (OVA) combined with air or tobacco smoke (4 exposures/day) daily for three weeks. Serology, lung cytopathology, cytokine profiles in bronchoalveolar lavage fluid (BALF) and on mediastinal lymph node cultures as well as lung function tests were performed after the last exposure. The natural history and the immune memory of allergic sensitization were studied with in vivo recall experiments. RESULTS: Exposure to OVA induced a small increase in OVA-specific serum IgE as compared with exposure to PBS (P < 0.05), while no inflammatory reaction was observed in the airways. Exposure to cigarette smoke did not induce IgE, but was characterized by a small but significant neutrophilic inflammatory reaction. Combining OVA with cigarette smoke not only induced a significant increase in OVA-specific IgE but also a distinct eosinophil and goblet cell enriched airway inflammation albeit that airway hyperresponsiveness was not evidenced. FACS analysis showed in these mice increases in dendritic cells (DC) and CD4(+ )T-lymphocytes along with a marked increase in IL-5 measured in the supernatant of lymph node cell cultures. Immune memory experiments evidenced the transient nature of these phenomena. CONCLUSION: In this study we show that mainstream cigarette smoke temporary disrupts the normal lung homeostatic tolerance to innocuous inhaled allergens, thereby inducing primary allergic sensitization. This is characterized not only by the development of persistent IgE, but also by the emergence of an eosinophil rich pulmonary inflammatory reaction

    Microglia and Microglia-Like Cell Differentiated from DC Inhibit CD4 T Cell Proliferation

    Get PDF
    The central nervous system (CNS) is generally regarded as a site of immune privilege, whether the antigen presenting cells (APCs) are involved in the immune homeostasis of the CNS is largely unknown. Microglia and DCs are major APCs in physiological and pathological conditions, respectively. In this work, primary microglia and microglia-like cells obtained by co-culturing mature dendritic cells with CNS endothelial cells in vitro were functional evaluated. We found that microglia not only cannot prime CD4 T cells but also inhibit mature DCs (maDCs) initiated CD4 T cells proliferation. More importantly, endothelia from the CNS can differentiate maDCs into microglia-like cells (MLCs), which possess similar phenotype and immune inhibitory function as microglia. Soluble factors including NO lie behind the suppression of CD4 T cell proliferation induced by both microglia and MLCs. All the data indicate that under physiological conditions, microglia play important roles in maintaining immune homeostasis of the CNS, whereas in a pathological situation, the infiltrated DCs can be educated by the local microenvironment and differentiate into MLCs with inhibitory function

    Much Ado About the TPP’s Effect on Pharmaceuticals

    Get PDF
    Ocular antigens are sequestered behind the blood-retina barrier and the ocular environment protects ocular tissues from autoimmune attack. The signals required to activate autoreactive T cells and allow them to cause disease in the eye remain in part unclear. In particular, the consequences of peripheral presentation of ocular antigens are not fully understood. We examined peripheral expression and presentation of ocular neo-self-antigen in transgenic mice expressing hen egg lysozyme (HEL) under a retina-specific promoter. High levels of HEL were expressed in the eye compared to low expression throughout the lymphoid system. Adoptively transferred naïve HEL-specific CD4+ T cells proliferated in the eye draining lymph nodes, but did not induce uveitis. By contrast, systemic infection with a murine cytomegalovirus (MCMV) engineered to express HEL induced extensive proliferation of transferred naïve CD4+ T cells, and significant uveoretinitis. In this model, wild-type MCMV, lacking HEL, did not induce overt uveitis, suggesting that disease is mediated by antigen-specific peripherally activated CD4+ T cells that infiltrate the retina. Our results demonstrate that retinal antigen is presented to T cells in the periphery under physiological conditions. However, when the same antigen is presented during viral infection, antigen-specific T cells access the retina and autoimmune uveitis ensues

    Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle

    Get PDF
    Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS

    Bone marrow-derived cells in ocular neovascularization: contribution and mechanisms

    Full text link
    Ocular neovascularization often leads to severe vision loss. The role of bone marrow-derived cells (BMCs) in the development of ocular neovascularization, and its significance, is increasingly being recognized. In this review, we discuss their contribution and the potential mechanisms that mediate the effect of BMCs on the progression of ocular neovascularization. The sequence of events by which BMCs participate in ocular neovascularization can be roughly divided into four phases, i.e., mobilization, migration, adhesion and differentiation. This process is delicately regulated and liable to be affected by multiple factors. Cytokines such as vascular endothelial growth factor, granulocyte colony-stimulating factor and erythropoietin are involved in the mobilization of BMCs. Studies have also demonstrated a key role of cytokines such as stromal cell-derived factor-1, tumor necrosis factor-α, as well as vascular endothelial growth factor, in regulating the migration of BMCs. The adhesion of BMCs is mainly regulated by vascular cell adhesion molecule-1, intercellular adhesion molecule-1 and vascular endothelial cadherin. However, the mechanisms regulating the differentiation of BMCs are largely unknown at present. In addition, BMCs secrete cytokines that interact with the microenvironment of ocular neovascularization; their contribution to ocular neovascularization, especially choroidal neovascularization, can be aggravated by several risk factors. An extensive regulatory network is thought to modulate the role of BMCs in the development of ocular neovascularization. A comprehensive understanding of the involved mechanisms will help in the development of novel therapeutic strategies related to BMCs. In this review, we have limited the discussion to the recent progress in this field, especially the research conducted at our laboratory
    corecore