2,227 research outputs found

    Variation in methods, results and reporting in electronic health record-based studies evaluating routine care in gout: A systematic review

    Get PDF
    Objective: To perform a systematic review examining the variation in methods, results, reporting and risk of bias in electronic health record (EHR)-based studies evaluating management of a common musculoskeletal disease, gout. Methods: Two reviewers systematically searched MEDLINE, Scopus, Web of Science, CINAHL, PubMed, EMBASE and Google Scholar for all EHR-based studies published by February 2019 investigating gout pharmacological treatment. Information was extracted on study design, eligibility criteria, definitions, medication usage, effectiveness and safety data, comprehensiveness of reporting (RECORD), and Cochrane risk of bias (registered PROSPERO CRD42017065195). Results: We screened 5,603 titles/abstracts, 613 full-texts and selected 75 studies including 1.9M gout patients. Gout diagnosis was defined in 26 ways across the studies, most commonly using a single diagnostic code (n = 31, 41.3%). 48.4% did not specify a disease-free period before ‘incident’ diagnosis. Medication use was suboptimal and varied with disease definition while results regarding effectiveness and safety were broadly similar across studies despite variability in inclusion criteria. Comprehensiveness of reporting was variable, ranging from 73% (55/75) appropriately discussing the limitations of EHR data use, to 5% (4/75) reporting on key data cleaning steps. Risk of bias was generally low. Conclusion: The wide variation in case definitions and medication-related analysis among EHR-based studies has implications for reported medication use. This is amplified by variable reporting comprehensiveness and the limited consideration of EHR-relevant biases (e.g. data adequacy) in study assessment tools. We recommend accounting for these biases and performing a sensitivity analysis on case definitions, and suggest changes to assessment tools to foster this

    Gene silencing of endothelial von Willebrand factor reduces the susceptibility of human endothelial cells to SARS-CoV-2 infection

    Get PDF
    Mechanisms underlying vascular endothelial susceptibility to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not fully understood. Emerging evidence indicates that patients lacking von Willebrand factor (vWF), an endothelial hallmark, are less severely affected by SARS-CoV-2 infection, yet the precise role of endothelial vWF in modulating coronavirus entry into endothelial cells is unknown. In the present study, we demonstrated that effective gene silencing by short interfering RNA (siRNA) for vWF expression in resting human umbilical vein endothelial cells (HUVECs) significantly reduced by 56% the cellular levels of SARS-CoV-2 genomic RNA. Similar reduction of intracellular SARS-CoV-2 genomic RNA levels was observed in non-activated HUVECs treated with siRNA targeting angiotensin-converting enzyme 2 (ACE2), the cellular gateway to coronavirus. By integrating quantitative information from real-time PCR and high-resolution confocal imaging, we demonstrated that ACE2 gene expression and its plasma membrane localization in HUVECs were both markedly reduced after treatment with siRNA anti-vWF or anti-ACE2. Conversely, siRNA anti-ACE2 did not reduce endothelial vWF gene expression and protein levels. Finally, SARS-CoV-2 infection of viable HUVECs was enhanced by overexpression of vWF, which increased ACE2 levels. Of note, we found a similar increase in interferon-β mRNA levels following transfection with untargeted, anti-vWF or anti-ACE2 siRNA and pcDNA3.1-WT-VWF. We envision that siRNA targeting endothelial vWF will protect against productive endothelial infection by SARS-CoV-2 through downregulation of ACE2 expression and might serve as a novel tool to induce disease resistance by modulating the regulatory role of vWF on ACE2 expression

    Solutions of Several Coupled Discrete Models in terms of Lame Polynomials of Order One and Two

    Full text link
    Coupled discrete models abound in several areas of physics. Here we provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lame polynomials of order one and two. Some of the models discussed are (i) coupled Salerno model, (ii) coupled Ablowitz-Ladik model, (iii) coupled saturated discrete nonlinear Schrodinger equation, (iv) coupled phi4 model, and (v) coupled phi6 model. Furthermore, we show that most of these coupled models in fact also possess an even broader class of exact solutions.Comment: 31 pages, to appear in Pramana (Journal of Physics) 201

    Evolution of Landau Levels into Edge States at an Atomically Sharp Edge in Graphene

    Full text link
    The quantum-Hall-effect (QHE) occurs in topologically-ordered states of two-dimensional (2d) electron-systems in which an insulating bulk-state coexists with protected 1d conducting edge-states. Owing to a unique topologically imposed edge-bulk correspondence these edge-states are endowed with universal properties such as fractionally-charged quasiparticles and interference-patterns, which make them indispensable components for QH-based quantum-computation and other applications. The precise edge-bulk correspondence, conjectured theoretically in the limit of sharp edges, is difficult to realize in conventional semiconductor-based electron systems where soft boundaries lead to edge-state reconstruction. Using scanning-tunneling microscopy and spectroscopy to follow the spatial evolution of bulk Landau-levels towards a zigzag edge of graphene supported above a graphite substrate we demonstrate that in this system it is possible to realize atomically sharp edges with no edge-state reconstruction. Our results single out graphene as a system where the edge-state structure can be controlled and the universal properties directly probed.Comment: 16 pages, 4 figure

    Leadership and decision-making practices in public versus private universities in Pakistan

    Get PDF
    The goal of this study is to examine differences in leadership and decision-making practices in public and private universities in Pakistan, with a focus on transformational leadership (TL) and participative decision-making (PDM). We conducted semi-structured interviews with 46 deans and heads of department from two public and two private universities in Pakistan. Our findings indicate that leadership and decision-making practices are different in public and private universities. While differences were observed in all six types of TL-behaviour, the following three approaches emerged to be crucial in both public and private universities: (1) articulating a vision, (2) fostering the acceptance of group goals, and (3) high-performance expectations. In terms of PDM, deans and heads of department in public and private universities adopt a collaborative approach. However, on a practical level this approach is limited to teacher- and student-related matters. Overall, our findings suggest that the leadership and decision-making practices in Pakistani public and private universities are transformational and participative in nature

    Analysis of discontinuous Galerkin methods using mesh-dependent norms and applications to problems with rough data

    Get PDF
    We prove the inf-sup stability of a discontinuous Galerkin scheme for second order elliptic operators in (unbalanced) mesh-dependent norms for quasi-uniform meshes for all spatial dimensions. This results in a priori error bounds in these norms. As an application we examine some problems with rough source term where the solution can not be characterised as a weak solution and show quasi-optimal error control

    Disorder Effects on Exciton-Polariton Condensates

    Full text link
    The impact of a random disorder potential on the dynamical properties of Bose Einstein condensates is a very wide research field. In microcavities, these studies are even more crucial than in the condensates of cold atoms, since random disorder is naturally present in the semiconductor structures. In this chapter, we consider a stable condensate, defined by a chemical potential, propagating in a random disorder potential, like a liquid flowing through a capillary. We analyze the interplay between the kinetic energy, the localization energy, and the interaction between particles in 1D and 2D polariton condensates. The finite life time of polaritons is taken into account as well. In the first part, we remind the results of [G. Malpuech et al. Phys. Rev. Lett. 98, 206402 (2007).] where we considered the case of a static condensate. In that case, the condensate forms either a glassy insulating phase at low polariton density (strong localization), or a superfluid phase above the percolation threshold. We also show the calculation of the first order spatial coherence of the condensate versus the condensate density. In the second part, we consider the case of a propagating non-interacting condensate which is always localized because of Anderson localization. The localization length is calculated in the Born approximation. The impact of the finite polariton life time is taken into account as well. In the last section we consider the case of a propagating interacting condensate where the three regimes of strong localization, Anderson localization, and superfluid behavior are accessible. The localization length is calculated versus the system parameters. The localization length is strongly modified with respect to the non-interacting case. It is infinite in the superfluid regime whereas it is strongly reduced if the fluid flows with a supersonic velocity.Comment: chapter for a book "Exciton Polaritons in Microcavities: New Frontiers" by Springer (2012), the original publication is available at http://www.springerlink.co

    Millisecond Oscillations in X-Ray Binaries

    Get PDF
    The first millisecond X-ray variability phenomena from accreting compact objects have recently been discovered with the Rossi X-ray Timing Explorer. Three new phenomena are observed from low-mass X-ray binaries containing low-magnetic-field neutron stars: millisecond pulsations, burst oscillations and kiloHertz quasi-periodic oscillations. Models for these new phenomena involve the neutron star spin, and orbital motion closely around the neutron star and rely explicitly on our understanding of strong gravity and dense matter. I review the observations of these new neutron-star phenomena and possibly related ones in black-hole candidates, and describe the attempts to use them to perform measurements of fundamental physical interest in these systems.Comment: 40 pages, 17 figures, 4 tables - submitted to the Annual Review of Astronomy and Astrophysics; to appear September 200

    Solutions of Several Coupled Discrete Models in terms of Lame Polynomials of Arbitrary Order

    Full text link
    Coupled discrete models abound in several areas of physics. Here we provide an extensive set of exact quasiperiodic solutions of a number of coupled discrete models in terms of Lam\'e polynomials of arbitrary order. The models discussed are (i) coupled Salerno model, (ii) coupled Ablowitz-Ladik model, (iii) coupled Ï•4\phi^4 model, and (iv) coupled Ï•6\phi^6 model. In all these cases we show that the coefficients of the Lam\'e polynomials are such that the Lam\'e polynomials can be reexpressed in terms of Chebyshev polynomials of the relevant Jacobi elliptic function
    • …
    corecore