93 research outputs found

    Born Knowing: Tentacled Snakes Innately Predict Future Prey Behavior

    Get PDF
    Background: Aquatic tentacled snakes (Erpeton tentaculatus) can take advantage of their prey’s escape response by startling fish with their body before striking. The feint usually startles fish toward the snake’s approaching jaws. But when fish are oriented at a right angle to the jaws, the C-start escape response translates fish parallel to the snake’s head. To exploit this latter response, snakes must predict the future location of the fish. Adult snakes can make this prediction. Is it learned, or are tentacled snakes born able to predict future fish behavior? Methods and Findings: Laboratory-born, naïve snakes were investigated as they struck at fish. Trials were recorded at 250 or 500 frames per second. To prevent learning, snakes were placed in a water container with a clear transparency sheet or glass bottom. The chamber was placed over a channel in a separate aquarium with fish below. Thus snakes could see and strike at fish, without contact. The snake’s body feint elicited C-starts in the fish below the transparency sheet, allowing strike accuracy to be quantified in relationship to the C-starts. When fish were oriented at a right angle to the jaws, naïve snakes biased their strikes to the future location of the escaping fish’s head, such that the snake’s jaws and the fish’s translating head usually converged. Several different types of predictive strikes were observed. Conclusions: The results show that some predators have adapted their nervous systems to directly compensate for the future behavior of prey in a sensory realm that usually requires learning. Instead of behavior selected during their lifetime

    Vision and Foraging in Cormorants: More like Herons than Hawks?

    Get PDF
    Background Great cormorants (Phalacrocorax carbo L.) show the highest known foraging yield for a marine predator and they are often perceived to be in conflict with human economic interests. They are generally regarded as visually-guided, pursuit-dive foragers, so it would be expected that cormorants have excellent vision much like aerial predators, such as hawks which detect and pursue prey from a distance. Indeed cormorant eyes appear to show some specific adaptations to the amphibious life style. They are reported to have a highly pliable lens and powerful intraocular muscles which are thought to accommodate for the loss of corneal refractive power that accompanies immersion and ensures a well focussed image on the retina. However, nothing is known of the visual performance of these birds and how this might influence their prey capture technique. Methodology/Principal Findings We measured the aquatic visual acuity of great cormorants under a range of viewing conditions (illuminance, target contrast, viewing distance) and found it to be unexpectedly poor. Cormorant visual acuity under a range of viewing conditions is in fact comparable to unaided humans under water, and very inferior to that of aerial predators. We present a prey detectability model based upon the known acuity of cormorants at different illuminances, target contrasts and viewing distances. This shows that cormorants are able to detect individual prey only at close range (less than 1 m). Conclusions/Significance We conclude that cormorants are not the aquatic equivalent of hawks. Their efficient hunting involves the use of specialised foraging techniques which employ brief short-distance pursuit and/or rapid neck extension to capture prey that is visually detected or flushed only at short range. This technique appears to be driven proximately by the cormorant's limited visual capacities, and is analogous to the foraging techniques employed by herons

    Regional Environmental Breadth Predicts Geographic Range and Longevity in Fossil Marine Genera

    Get PDF
    Geographic range is a good indicator of extinction susceptibility in fossil marine species and higher taxa. The widely-recognized positive correlation between geographic range and taxonomic duration is typically attributed to either accumulating geographic range with age or an extinction buffering effect, whereby cosmopolitan taxa persist longer because they are reintroduced by dispersal from remote source populations after local extinction. The former hypothesis predicts that all taxa within a region should have equal probabilities of extinction regardless of global distributions while the latter predicts that cosmopolitan genera will have greater survivorship within a region than endemics within the same region. Here we test the assumption that all taxa within a region have equal likelihoods of extinction.We use North American and European occurrences of marine genera from the Paleobiology Database and the areal extent of marine sedimentary cover in North America to show that endemic and cosmopolitan fossil marine genera have significantly different range-duration relationships and that broad geographic range and longevity are both predicted by regional environmental breadth. Specifically, genera that occur outside of the focal region are significantly longer lived and have larger geographic ranges and environmental breadths within the focal region than do their endemic counterparts, even after controlling for differences in sampling intensity. Analyses of the number of paleoenvironmental zones occupied by endemic and cosmopolitan genera suggest that the number of paleoenvironmental zones occupied is a key factor of geographic range that promotes genus survivorship.Wide environmental tolerances within a single region predict both broad geographic range and increased longevity in marine genera over evolutionary time. This result provides a specific driving mechanism for the spatial and temporal distributions of marine genera at regional and global scales and is consistent with the niche-breadth hypothesis operating on macroevolutionary timescales

    Female Genitalia Concealment Promotes Intimate Male Courtship in a Water Strider

    Get PDF
    Violent coercive mating initiation is typical for animals with sexual conflict over mating. In these species, the coevolutionary arms-race between female defenses against coercive mating and male counter-adaptations for increased mating success leads to coevolutionary chases of male and female traits that influence the mating. It has been controversial whether one of the sexes can evolve traits that allow them to “win” this arms race. Here, we use morphological analysis (traditional and scanning electron micrographs), laboratory experiments and comparative methods to show how females of a species characterized by typical coercive mating initiation appear to “win” a particular stage of the sexual conflict by evolving morphology to hide their genitalia from direct, forceful access by males. In an apparent response to the female morphological adaptation, males of this species added to their typically violent coercive mounting of the female new post-mounting, pre-copulatory courtship signals produced by tapping the water's surface with the mid-legs. These courtship signals are intimate in the sense that they are aimed at the female, on whom the male is already mounted. Females respond to the signals by exposing their hidden genitalia for copulatory intromission. Our results indicate that the apparent victory of coevolutionary arms race by one sex in terms of morphology may trigger evolution of a behavioral phenotype in the opposite sex

    PEDF and GDNF are key regulators of photoreceptor development and retinal neurogenesis in reaggregates from chick embryonic retina

    Get PDF
    Here, role(s) of pigment epithelial-derived factor (PEDF) and glial-derived neurotrophic factor (GDNF) on photoreceptor development in three-dimensional reaggregates from the retinae of the E6 chick embryo (rosetted spheroids) was investigated. Fully dispersed cells were reaggregated under serum-reduced conditions and supplemented with 50 ng/ml PEDF alone or in combination with 50 ng/ml GDNF. The spheroids were analyzed for cell growth, differentiation, and death using proliferating cell nuclear antigen, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling, and other immunocytochemical stainings and semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) methods. PEDF strongly promoted synthesis of the messenger RNAs for blue and violet cone opsins and to a lesser extent on the red and green cone opsins. This correlated with an increase in the number of cone photoreceptors, as determined by the cone cell marker CERN906. Likewise, PEDF nearly completely inhibited rod differentiation, as detected by immunostaining with anti-rho4D2 and RT-PCR. Furthermore, PEDF accelerated proliferation of cells in the spheroids and inhibited apoptosis. As negative effects, PEDF inhibited the normal histotypic tissue formation of retinal aggregates and reduced the frequency of photoreceptor rosettes and IPL-like areas. Noticeably, supplementation of PEDF-treated cultures with GDNF reversed the effects of PEDF on spheroid morphology and on rod differentiation. This study establishes that PEDF strongly affects three-dimensional retinogenesis in vitro, most notably by inhibiting rod development and supporting proliferation and differentiation of cones, effects which are partially counteracted by GDNF

    Nuttalliella namaqua: A Living Fossil and Closest Relative to the Ancestral Tick Lineage: Implications for the Evolution of Blood-Feeding in Ticks

    Get PDF
    Ticks are monophyletic and composed of the hard (Ixodidae) and soft (Argasidae) tick families, as well as the Nuttalliellidae, a family with a single species, Nuttalliella namaqua. Significant biological differences in lifestyle strategies for hard and soft ticks suggest that various blood-feeding adaptations occurred after their divergence. The phylogenetic relationships between the tick families have not yet been resolved due to the lack of molecular data for N. namaqua. This tick possesses a pseudo-scutum and apical gnathostoma as observed for ixodids, has a leathery cuticle similar to argasids and has been considered the evolutionary missing link between the two families. Little knowledge exists with regard to its feeding biology or host preferences. Data on its biology and systematic relationship to the other tick families could therefore be crucial in understanding the evolution of blood-feeding behaviour in ticks. Live specimens were collected and blood meal analysis showed the presence of DNA for girdled lizards from the Cordylid family. Feeding of ticks on lizards showed that engorgement occurred rapidly, similar to argasids, but that blood meal concentration occurs via malpighian excretion of water. Phylogenetic analysis of the 18S nuclear and 16S mitochondrial genes indicate that N. namaqua grouped basal to the main tick families. The data supports the monophyly of all tick families and suggests the evolution of argasid-like blood-feeding behaviour in the ancestral tick lineage. Based on the data and considerations from literature we propose an origin for ticks in the Karoo basin of Gondwanaland during the late Permian. The nuttalliellid family almost became extinct during the End Permian event, leaving N. namaqua as the closest living relative to the ancestral tick lineage and the evolutionary missing link between the tick families

    Effects of Increased Nitrogen Deposition and Precipitation on Seed and Seedling Production of Potentilla tanacetifolia in a Temperate Steppe Ecosystem

    Get PDF
    The responses of plant seeds and seedlings to changing atmospheric nitrogen (N) deposition and precipitation regimes determine plant population dynamics and community composition under global change.In a temperate steppe in northern China, seeds of P. tanacetifolia were collected from a field-based experiment with N addition and increased precipitation to measure changes in their traits (production, mass, germination). Seedlings germinated from those seeds were grown in a greenhouse to examine the effects of improved N and water availability in maternal and offspring environments on seedling growth. Maternal N-addition stimulated seed production, but it suppressed seed mass, germination rate and seedling biomass of P. tanacetifolia. Maternal N-addition also enhanced responses of seedlings to N and water addition in the offspring environment. Maternal increased-precipitation stimulated seed production, but it had no effect on seed mass and germination rate. Maternal increased-precipitation enhanced seedling growth when grown under similar conditions, whereas seedling responses to offspring N- and water-addition were suppressed by maternal increased-precipitation. Both offspring N-addition and increased-precipitation stimulated growth of seedlings germinated from seeds collected from the maternal control environment without either N or water addition. Our observations indicate that both maternal and offspring environments can influence seedling growth of P. tanacetifolia with consequent impacts on the future population dynamics of this species in the study area.The findings highlight the importance of the maternal effects on seed and seedling production as well as responses of offspring to changing environmental drivers in mechanistic understanding and projecting of plant population dynamics under global change

    Order in Spontaneous Behavior

    Get PDF
    Brains are usually described as input/output systems: they transform sensory input into motor output. However, the motor output of brains (behavior) is notoriously variable, even under identical sensory conditions. The question of whether this behavioral variability merely reflects residual deviations due to extrinsic random noise in such otherwise deterministic systems or an intrinsic, adaptive indeterminacy trait is central for the basic understanding of brain function. Instead of random noise, we find a fractal order (resembling Lévy flights) in the temporal structure of spontaneous flight maneuvers in tethered Drosophila fruit flies. Lévy-like probabilistic behavior patterns are evolutionarily conserved, suggesting a general neural mechanism underlying spontaneous behavior. Drosophila can produce these patterns endogenously, without any external cues. The fly's behavior is controlled by brain circuits which operate as a nonlinear system with unstable dynamics far from equilibrium. These findings suggest that both general models of brain function and autonomous agents ought to include biologically relevant nonlinear, endogenous behavior-initiating mechanisms if they strive to realistically simulate biological brains or out-compete other agents
    corecore