90 research outputs found

    The neural underpinnings of vicarious experience

    Get PDF
    Everyday we vicariously experience a range of states that we observe in other people: we may "feel" embarrassed when witnessing another making a social faux pas, or we may feel sadness when we see a loved one upset. In some cases this process appears to be implicit. For instance, observing pain in others may activate pain-related neural processes but without generating an overt feeling of pain. In other cases, people report a more literal, conscious sharing of affective or somatic states and this has sometimes been described as representing an extreme form of empathy. By contrast, there appear to be some people who are limited in their ability to vicariously experience the states of others. This may be the case in several psychiatric, neurodevelopmental, and personality disorders where deficits in interpersonal understanding are observed, such as schizophrenia, autism, and psychopathy. In recent decades, neuroscientists have paid significant attention to the understanding of the “social brain,” and the way in which neural processes govern our understanding of other people. In this Research Topic, we wish to contribute towards this understanding and ask for the submission of manuscripts focusing broadly on the neural underpinnings of vicarious experience. This may include theoretical discussion, case studies, and empirical investigation using behavioural techniques, electrophysiology, brain stimulation, and neuroimaging in both healthy and clinical populations. Of specific interest will be the neural correlates of individual differences in traits such as empathy, how we distinguish between ourselves and other people, and the sensorimotor resonant mechanisms that may allow us to put ourselves in another's shoes

    Is body dysmorphic disorder associated with abnormal bodily self-awareness? A study using the rubber hand illusion.

    Get PDF
    Evidence from past research suggests that behaviours and characteristics related to body dissatisfaction may be associated with greater instability of perceptual body image, possibly due to problems in the integration of body-related multisensory information. We investigated whether people with body dysmorphic disorder (BDD), a condition characterised by body image disturbances, demonstrated enhanced susceptibility to the rubber hand illusion (RHI), which arises as a result of multisensory integration processes when a rubber hand and the participant\u27s hidden real hand are stimulated in synchrony. Overall, differences in RHI experience between the BDD group and healthy and schizophrenia control groups (n = 17 in each) were not significant. RHI strength, however, was positively associated with body dissatisfaction and related tendencies. For the healthy control group, proprioceptive drift towards the rubber hand was observed following synchronous but not asynchronous stimulation, a typical pattern when inducing the RHI. Similar drifts in proprioceptive awareness occurred for the BDD group irrespective of whether stimulation was synchronous or not. These results are discussed in terms of possible abnormalities in visual processing and multisensory integration among people with BDD

    Primary Motor Cortex Excitability Is Modulated during the Mental Simulation of Hand Movement

    Get PDF
    Special issue: Motor cognitio

    Concurrent transcranial direct current stimulation and progressive resistance training in Parkinson's disease: Study protocol for a randomised controlled trial

    Get PDF
    BACKGROUND: Parkinson\u27s disease (PD) results from a loss of dopamine in the brain, leading to movement dysfunctions such as bradykinesia, postural instability, resting tremor and muscle rigidity. Furthermore, dopamine deficiency in PD has been shown to result in maladaptive plasticity of the primary motor cortex (M1). Progressive resistance training (PRT) is a popular intervention in PD that improves muscular strength and results in clinically significant improvements on the Unified Parkinson\u27s Disease Rating Scale (UPDRS). In separate studies, the application of anodal transcranial direct current stimulation (a-tDCS) to the M1 has been shown to improve motor function in PD; however, the combined use of tDCS and PRT has not been investigated. METHODS/DESIGN: We propose a 6-week, double-blind randomised controlled trial combining M1 tDCS and PRT of the lower body in participants (n&thinsp;=&thinsp;42) with moderate PD (Hoehn and Yahr scale score 2-4). Supervised lower body PRT combined with functional balance tasks will be performed three times per week with concurrent a-tDCS delivered at 2 mA for 20 minutes (a-tDCS group) or with sham tDCS (sham group). Control participants will receive standard care (control group). Outcome measures will include functional strength, gait speed and variability, balance, neurophysiological function at rest and during movement execution, and the UPDRS motor subscale, measured at baseline, 3 weeks (during), 6 weeks (post), and 9 weeks (retention). Ethical approval has been granted by the Deakin University Human Research Ethics Committee (project number 2015-014), and the trial has been registered with the Australian New Zealand Clinical Trials Registry (ACTRN12615001241527). DISCUSSION: This will be the first randomised controlled trial to combine PRT and a-tDCS targeting balance and gait in people with PD. The study will elucidate the functional, clinical and neurophysiological outcomes of combined PRT and a-tDCS. It is hypothesised that combined PRT and a-tDCS will significantly improve lower limb strength, postural sway, gait speed and stride variability compared with PRT with sham tDCS. Further, we hypothesise that pre-frontal cortex activation during dual-task cognitive and gait/balance activities will be reduced, and that M1 excitability and inhibition will be augmented, following the combined PRT and a-tDCS intervention. <br /

    White matter organization in developmental coordination disorder: A pilot study exploring the added value of constrained spherical deconvolution

    Get PDF
    Previous studies of white matter organization in sensorimotor tracts in developmental coordination disorder (DCD) have adopted diffusion tensor imaging (DTI), a method unable to reconcile pathways with ‘crossing fibres’. In response to limitations of the commonly adopted DTI approach, the present study employed a framework that can reconcile the ‘crossing fibre’ problem (i.e., constrained spherical deconvolution- CSD) to characterize white matter tissue organization of sensorimotor tracts in young adults with DCD. Participants were 19 healthy adults aged 18–46: 7 met diagnostic criteria for DCD (4 females) and 12 were controls (3 females). All underwent high angular diffusion MRI. After preprocessing, the left and right corticospinal tracts (CST) and superior longitudinal fasciculi (SLF) were delineated and all tracts were then generated using both CSD and DTI tractography respectively. Based on the CSD model, individuals with DCD demonstrated significantly decreased mean apparent fibre density (AFD) in the left SLF relative to controls (with large effect size, Cohen's d = 1.32) and a trend for decreased tract volume of the right SLF (with medium-large effect size, Cohen's d = 0.73). No differences in SLF microstructure were found between groups using DTI, nor were differences in CST microstructure observed across groups regardless of hemisphere or diffusion model. Our data are consistent with the view that motor impairment characteristic of DCD may be subserved by white matter abnormalities in sensorimotor tracts, specifically the left and right SLF. Our data further highlight the benefits of higher order diffusion MRI (e.g. CSD) relative to DTI for clarifying earlier inconsistencies in reports speaking to white matter organization in DCD, and its contribution to poor motor skill in DCD

    Impulsivity and the 5-HTTLPR Polymorphism in a Non-Clinical Sample

    Get PDF
    BACKGROUND: Impulsivity has been associated with serotonergic system functions. However, few researchers have investigated the relationship between a polymorphism in the promoter of the serotonin transporter gene (5-HTTLPR) and the different components of impulsivity in a non-clinical population. The aim of this study was to investigate the relationship between a polymorphism in the promoter region of the serotonin transporter gene (5-HTTLPR) and the different components of impulsivity in a non-clinical population. METHODOLOGY/PRINCIPAL FINDINGS: We administered two neuropsychological tests, the Continuous Performance Task and the Iowa Gambling Task, to 127 healthy participants to measure their levels of motor, attentional and non-planning impulsivity. Then, these participants were grouped by genotype and gender, and their scores on impulsivity measures were compared. There were no significant differences between group scores on attentional, motor and non-planning impulsivity. CONCLUSIONS/SIGNIFICANCE: Our results suggest that 5-HTTLPR genotype is not significantly associated with subsets of impulsive behavior in a non-clinical sample when measured by neuropsychological tests. These findings are discussed in terms of the sensitivity of neuropsychological tests to detect impulsivity in a non-clinical population and the role of gender and race in the relationship between the 5-HTTLPR and impulsivity

    No Evidence That Gratitude Enhances Neural Performance Monitoring or Conflict-Driven Control

    Get PDF
    It has recently been suggested that gratitude can benefit self-regulation by reducing impulsivity during economic decision making. We tested if comparable benefits of gratitude are observed for neural performance monitoring and conflict-driven self-control. In a pre-post design, 61 participants were randomly assigned to either a gratitude or happiness condition, and then performed a pre-induction flanker task. Subsequently, participants recalled an autobiographical event where they had felt grateful or happy, followed by a post-induction flanker task. Despite closely following existing protocols, participants in the gratitude condition did not report elevated gratefulness compared to the happy group. In regard to self-control, we found no association between gratitude--operationalized by experimental condition or as a continuous predictor--and any control metric, including flanker interference, post-error adjustments, or neural monitoring (the error-related negativity, ERN). Thus, while gratitude might increase economic patience, such benefits may not generalize to conflict-driven control processes

    Learning efficacy of explicit visuomotor sequences in children with attention-deficit/hyperactivity disorder and Asperger syndrome

    Get PDF
    Developmental disorders such as attention-deficit/hyperactivity disorder (ADHD) and Asperger syndrome (AS) are often associated with learning disabilities. This study investigated the explicit learning of visuomotor sequences in 17 ADHD children (mean age 12.1), 21 AS children (mean age 12.7), and 15 typically developing children (mean age: 12.3). The participants were required to explore a hidden sequence of button presses by trial and error and elaborate the learned sequence (2 × 10 task: Hikosaka et al. 1996). The results indicated that although ADHD and AS children had a tendency of repeating the same errors and took longer to complete a sequence, both showed a degree and pattern of improvement in accuracy and speed similar to that of typically developing children. These results suggest that the explicit learning of visuomotor sequence in ADHD and AS patients is largely unimpaired

    Associative Vocabulary Learning: Development and Testing of Two Paradigms for the (Re-) Acquisition of Action- and Object-Related Words

    Get PDF
    Despite a growing number of studies, the neurophysiology of adult vocabulary acquisition is still poorly understood. One reason is that paradigms that can easily be combined with neuroscientfic methods are rare. Here, we tested the efficiency of two paradigms for vocabulary (re-) acquisition, and compared the learning of novel words for actions and objects. Cortical networks involved in adult native-language word processing are widespread, with differences postulated between words for objects and actions. Words and what they stand for are supposed to be grounded in perceptual and sensorimotor brain circuits depending on their meaning. If there are specific brain representations for different word categories, we hypothesized behavioural differences in the learning of action-related and object-related words. Paradigm A, with the learning of novel words for body-related actions spread out over a number of days, revealed fast learning of these new action words, and stable retention up to 4 weeks after training. The single-session Paradigm B employed objects and actions. Performance during acquisition did not differ between action-related and object-related words (time*word category: p = 0.01), but the translation rate was clearly better for object-related (79%) than for action-related words (53%, p = 0.002). Both paradigms yielded robust associative learning of novel action-related words, as previously demonstrated for object-related words. Translation success differed for action- and object-related words, which may indicate different neural mechanisms. The paradigms tested here are well suited to investigate such differences with neuroscientific means. Given the stable retention and minimal requirements for conscious effort, these learning paradigms are promising for vocabulary re-learning in brain-lesioned people. In combination with neuroimaging, neuro-stimulation or pharmacological intervention, they may well advance the understanding of language learning to optimize therapeutic strategies
    corecore