1,514 research outputs found

    Fosfatos naturais reativos: resultados obtidos no sul do Brasil.

    Get PDF
    bitstream/item/84108/1/CNPT-BOL.-PESQ.-4-00.pd

    Stationary Entangled Radiation from Micromechanical Motion

    Full text link
    Mechanical systems facilitate the development of a new generation of hybrid quantum technology comprising electrical, optical, atomic and acoustic degrees of freedom. Entanglement is the essential resource that defines this new paradigm of quantum enabled devices. Continuous variable (CV) entangled fields, known as Einstein-Podolsky-Rosen (EPR) states, are spatially separated two-mode squeezed states that can be used to implement quantum teleportation and quantum communication. In the optical domain, EPR states are typically generated using nondegenerate optical amplifiers and at microwave frequencies Josephson circuits can serve as a nonlinear medium. It is an outstanding goal to deterministically generate and distribute entangled states with a mechanical oscillator. Here we observe stationary emission of path-entangled microwave radiation from a parametrically driven 30 micrometer long silicon nanostring oscillator, squeezing the joint field operators of two thermal modes by 3.40(37) dB below the vacuum level. This mechanical system correlates up to 50 photons/s/Hz giving rise to a quantum discord that is robust with respect to microwave noise. Such generalized quantum correlations of separable states are important for quantum enhanced detection and provide direct evidence for the non-classical nature of the mechanical oscillator without directly measuring its state. This noninvasive measurement scheme allows to infer information about otherwise inaccessible objects with potential implications in sensing, open system dynamics and fundamental tests of quantum gravity. In the near future, similar on-chip devices can be used to entangle subsystems on vastly different energy scales such as microwave and optical photons.Comment: 13 pages, 5 figure

    In vitro haemodynamic testing of Amplatzer plugs for paravalvular leak occlusion after Transcather Aortic Valve Implantation

    Get PDF
    Objective: We aimed to in-vitro test Amplatzer devices (Amplatzer Vascular Plug II and Amplatzer Vascular Plug III, SJM St. Paul, MN) in closing PVL generated by transcatheter balloon expandable aortic valve prosthesis in order to quantify the effective treatment of PVL. Background: Transcatheter aortic valve replacement (TAVI) procedures represent the treatment of choice for high risk patients. Despite evolving technologies paravalvular leak (PVL) is still a major unaddressed issue. This severe complication significantly impair long-term survival. Percutaneous treatment of this complication is usually performed with the implantation of not specifically designed and not approved vascular devices. Methods: A 23mm Sapien XT (Edwards Lifesciences, Irvine, CA) was implanted in a rubber aortic root and a semi-elliptical shape PVL was created. The vascular occluder devices were implanted in the PVL and hemodynamic performance was tested in a pulse duplicator according to international standard ISO 5840-3:2013. Different type of comparison tests together with high speed camera recording allowed us to define the global efficiency of the occluders and their interaction with the transcatheter prosthesis. Results: The results revealed that the use of vascular plugs was not per se sufficient to produce an effective or substantial reduction of PVL with a maximum efficiency inferior of 50%. Recorded video showed clearly that the vascular plug always interfered with the leaflet of the prosthetic valve. Conclusions: Current used devices do not guarantee effective treatment of PVL and may otherwise compromise the structural integrity of the prosthetic valve implanted. Specific designed devices are required

    In Vitro and Ex Vivo Hemodynamic Testing of an Innovative Occluder for Paravalvular Leak After Transcather Aortic Valve Implantation

    Get PDF
    This study aims at achieving a proof-of-concept for a novel device designed to occlude the orifices that may form between transcatheter valves and host tissues after TAVI. The device effect on the performance of a SAPIEN XT with a paravalvular gap was assessed into an in vitro and ex vivo pulse duplicator. The in vitro tests were performed complying with the standard international regulations, measuring the trasvalvular pressure and regurgitant volumes with and without the paravalvular gap, and with the occluder correctly positioned into the gap. In the second series of tests, the leakage reduction due to the presence of the occluder was assessed for the same setup, into a beating swine heart. The occluder implantation decreased the regurgitant fraction of about 50% for the in vitro assessment and 75% for the ex vivo test, under rest operating conditions. These results suggest that suitably designed occluders can lead to important benefit in the PVL treatment

    In vitro assessment of pacing as therapy for aortic regurgitation

    Get PDF
    Background and objective Clinical evaluation of pacing therapy in mitigating the aortic insufficiency after transchateter aortic valve implantation often gives contradictory outcomes. This study presents an in vitro investigation aimed at clarifying the effect of pacing on paravalvular leakage. Methods A series of in vitro tests reproducing the heart operating changes clinically obtained by pacing was carried out in a 26 mm Edwards Sapien XT prosthesis with mild paravalvular leakage. The effect of pacing on the regurgitant volumes per cycle and per minute was quantified, and the energy and power consumed by the left ventricle were calculated. Results Results indicate that though pacing results in some reduction in the total regurgitation per cycle, the volume of fluid regurgitating per minute increases substantially, causing overload of left ventricle. Conclusions Our tests indicate no effective haemodynamic benefit from pacing, suggesting a prudential clinical use of this therapy for the treatment of postoperative aortic regurgitation

    Some remarks on the spectral functions of the Abelian Higgs Model

    Get PDF
    We consider the unitary Abelian Higgs model and investigate its spectral functions at one-loop order. This analysis allows to disentangle what is physical and what is not at the level of the elementary particle propagators, in conjunction with the Nielsen identities. We highlight the role of the tadpole graphs and the gauge choices to get sensible results. We also introduce an Abelian Curci-Ferrari action coupled to a scalar field to model a massive photon which, like the non-Abelian Curci-Ferarri model, is left invariant by a modified non-nilpotent BRST symmetry. We clearly illustrate its non-unitary nature directly from the spectral function viewpoint. This provides a functional analogue of the Ojima observation in the canonical formalism: there are ghost states with nonzero norm in the BRST-invariant states of the Curci-Ferrari model.Comment: 32 pages, 12 figure
    corecore