5 research outputs found

    Synthetic conjugates of ursodeoxycholic acid inhibit cystogenesis in experimental models of polycystic liver disease

    Get PDF
    Background and aims: polycystic liver diseases (PLDs) are genetic disorders characterized by progressive development of symptomatic biliary cysts. Current surgical and pharmacological approaches are ineffective, and liver transplantation represents the only curative option. Ursodeoxycholic acid (UDCA) and histone deacetylase 6 inhibitors (HDAC6is) have arisen as promising therapeutic strategies, but with partial benefits. Approach and results: here, we tested an approach based on the design, synthesis, and validation of a family of UDCA synthetic conjugates with selective HDAC6i capacity (UDCA-HDAC6i). Four UDCA-HDAC6i conjugates presented selective HDAC6i activity, UDCA-HDAC6i #1 being the most promising candidate. UDCA orientation within the UDCA-HDAC6i structure was determinant for HDAC6i activity and selectivity. Treatment of polycystic rats with UDCA-HDAC6i #1 reduced their hepatomegaly and cystogenesis, increased UDCA concentration, and inhibited HDAC6 activity in liver. In cystic cholangiocytes UDCA-HDAC6i #1 restored primary cilium length and exhibited potent antiproliferative activity. UDCA-HDAC6i #1 was actively transported into cells through BA and organic cation transporters. Conclusions: these UDCA-HDAC6i conjugates open a therapeutic avenue for PLDs

    Quince (Cydonia oblonga) in vitro plant root formation through an automated temporary inmersion system, and its acclimation

    Get PDF
    Artículo científicoQuince (Cydonia oblonga) is a non-traditional fruit tree found in Costa Rica that has therapeutic and nutritional properties; however its slow growth and root formation prevents the production of a homogeneous population when using conventional farming techniques. Hence, the aim of this research project was to generate uniform plant material in a reduced time span using a temporary immersion bioreactor system (RITAS Ÿ). A semisolid rooting MS culture medium supplemented with 0.1 mg L-1 NAA; 0.3 mg L-1 IBA and 3% sucrose (pH 6.5), developed in the Centro de Investigación en Biotecnología (CIB), Instituto Tecnológico de Costa Rica (ITCR), in Cartago, was used as a reference medium. Four different variations in the sucrose concentration (1%, 2%, 3%, and 4%) were performed in liquid medium. Each trial was evaluated with in vitro plants which had been previously exposed to the culture medium of the corresponding treatments, in a stationary mode and for a 15 day long period, and with in vitro plants without any previous treatment (a total of eight treatments). The comparison of the root formation percentages evidenced the clear effect of sucrose concentration used, with the best results obtained when using the 2% sucrose trial with no pre-treatment (73.3%). The in vitro plants were acclimated in cylinders made out of peat, have previously been disinfected with fungicide, and placed in a humidity chamber at a 20.5°C average temperature and a 75,5% relative humidity for the establishment of weekly fertilizing cycles. The acclimation process generated an 80% survival rate, since several seedlings experienced stem strangulation caused by a fungal attack. The conidiophores identified through optical and scanning electron microscopy evidenced the presence of Cladosporium spp., which was controlled with carbendazim and iprodione fungicides
    corecore