20,803 research outputs found

    Quarkonia in Hamiltonian Light-Front QCD

    Full text link
    A constituent parton picture of hadrons with logarithmic confinement naturally arises in weak coupling light-front QCD. Confinement provides a mass gap that allows the constituent picture to emerge. The effective renormalized Hamiltonian is computed to O(g2){\cal O}(g^2), and used to study charmonium and bottomonium. Radial and angular excitations can be used to fix the coupling α\alpha, the quark mass MM, and the cutoff Λ\Lambda. The resultant hyperfine structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much more reader-friendly); corrected error in self-energ

    Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED

    Get PDF
    We study the part of the renormalized, cutoff QED light-front Hamiltonian that does not change particle number. The Hamiltonian contains interactions that must be treated in second-order bound state perturbation theory to obtain hyperfine structure. We show that a simple unitary transformation leads directly to the familiar Breit-Fermi spin-spin and tensor interactions, which can be treated in degenerate first-order bound-state perturbation theory, thus simplifying analytic light-front QED calculations. To the order in momenta we need to consider, this transformation is equivalent to a Melosh rotation. We also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil

    Toxic Cyanobacteria Aerosols: Tests of Filters for Cells

    Get PDF
    Aerosolization of toxic cyanobacteria released from the surface of lakes is a new area of study that could uncover a previously unknown route of exposure to toxic cyanobacteria. Since toxic cyanobacteria may be responsible for adverse human health effects, methods and equipment need to be tested and established for monitoring these airborne bacteria. The primary focus of this study was to create controlled laboratory experiments that simulate natural lake aerosol production. I set out to test for the best type of filter to collect and analyze the aerosolized cells as small as 0.2-2.0 µm, known as picoplankton. To collect these aerosols, air was vacuumed from just above a sample of lake water passing through either glass fiber filters (GFF) or 0.22 µm MF-Millipore™ membrane filters (0.22 Millipore™). Filter collections were analyzed through epiflourescence microscopy for determining cell counts. Data analysis revealed that 0.22 Millipore™ filters were the best option for cell enumeration providing better epiflourescence optical quality and higher cell counts

    Initial bound state studies in light-front QCD

    Full text link
    We present the first numerical QCD bound state calculation based on a renormalization group-improved light-front Hamiltonian formalism. The QCD Hamiltonian is determined to second order in the coupling, and it includes two-body confining interactions. We make a momentum expansion, obtaining an equal-time-like Schrodinger equation. This is solved for quark-antiquark constituent states, and we obtain a set of self-consistent parameters by fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include

    Similarity Renormalization Group for Nucleon-Nucleon Interactions

    Get PDF
    The similarity renormalization group (SRG) is based on unitary transformations that suppress off-diagonal matrix elements, forcing the hamiltonian towards a band-diagonal form. A simple SRG transformation applied to nucleon-nucleon interactions leads to greatly improved convergence properties while preserving observables, and provides a method to consistently evolve many-body potentials and other operators.Comment: 5 pages, 6 figures (8 figure files); references updated and acknowledgment adde

    Stability of Gravitational and Electromagnetic Geons

    Get PDF
    Recent work on gravitational geons is extended to examine the stability properties of gravitational and electromagnetic geon constructs. All types of geons must possess the property of regularity, self-consistency and quasi-stability on a time-scale much longer than the period of the comprising waves. Standard perturbation theory, modified to accommodate time-averaged fields, is used to test the requirement of quasi-stability. It is found that the modified perturbation theory results in an internal inconsistency. The time-scale of evolution is found to be of the same order in magnitude as the period of the comprising waves. This contradicts the requirement of slow evolution. Thus not all of the requirements for the existence of electromagnetic or gravitational geons are met though perturbation theory. From this result it cannot be concluded that an electromagnetic or a gravitational geon is a viable entity. The broader implications of the result are discussed with particular reference to the problem of gravitational energy.Comment: 40 pages, 5 EPS figures, uses overcite.st

    Companions to peculiar red giants: HR 363 and HR 1105

    Get PDF
    Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded

    Perturbative Tamm-Dancoff Renormalization

    Full text link
    A new two-step renormalization procedure is proposed. In the first step, the effects of high-energy states are considered in the conventional (Feynman) perturbation theory. In the second step, the coupling to many-body states is eliminated by a similarity transformation. The resultant effective Hamiltonian contains only interactions which do not change particle number. It is subject to numerical diagonalization. We apply the general procedure to a simple example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure

    Analytic Treatment of Positronium Spin Splittings in Light-Front QED

    Full text link
    We study the QED bound-state problem in a light-front hamiltonian approach. Starting with a bare cutoff QED Hamiltonian, HBH_{_{B}}, with matrix elements between free states of drastically different energies removed, we perform a similarity transformation that removes the matrix elements between free states with energy differences between the bare cutoff, Λ\Lambda, and effective cutoff, \lam (\lam < \Lam). This generates effective interactions in the renormalized Hamiltonian, HRH_{_{R}}. These effective interactions are derived to order α\alpha in this work, with α≪1\alpha \ll 1. HRH_{_{R}} is renormalized by requiring it to satisfy coupling coherence. A nonrelativistic limit of the theory is taken, and the resulting Hamiltonian is studied using bound-state perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow \infty, is taken. This upper bound on \lam^2 places the effects of low-energy (energy transfer below \lam) emission in the effective interactions in the ∣ee‾>| e {\overline e} > sector. This lower bound on \lam^2 insures that the nonperturbative scale of interest is not removed by the similarity transformation. As an explicit example of the general formalism introduced, we show that the Hamiltonian renormalized to O(α)O(\alpha) reproduces the exact spectrum of spin splittings, with degeneracies dictated by rotational symmetry, for the ground state through O(α4)O(\alpha^4). The entire calculation is performed analytically, and gives the well known singlet-triplet ground state spin splitting of positronium, 7/6α2Ryd7/6 \alpha^2 Ryd. We discuss remaining corrections other than the spin splittings and how they can be treated in calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining corrections added, title changed, error in older version corrected, cutoff placed in a windo
    • …
    corecore