20,803 research outputs found
Quarkonia in Hamiltonian Light-Front QCD
A constituent parton picture of hadrons with logarithmic confinement
naturally arises in weak coupling light-front QCD. Confinement provides a mass
gap that allows the constituent picture to emerge. The effective renormalized
Hamiltonian is computed to , and used to study charmonium and
bottomonium. Radial and angular excitations can be used to fix the coupling
, the quark mass , and the cutoff . The resultant hyperfine
structure is very close to experiment.Comment: 9 pages, 1 latex figure included in the text. Published version (much
more reader-friendly); corrected error in self-energ
Note on restoring manifest rotational symmetry in hyperfine and fine structure in light-front QED
We study the part of the renormalized, cutoff QED light-front Hamiltonian
that does not change particle number. The Hamiltonian contains interactions
that must be treated in second-order bound state perturbation theory to obtain
hyperfine structure. We show that a simple unitary transformation leads
directly to the familiar Breit-Fermi spin-spin and tensor interactions, which
can be treated in degenerate first-order bound-state perturbation theory, thus
simplifying analytic light-front QED calculations. To the order in momenta we
need to consider, this transformation is equivalent to a Melosh rotation. We
also study how the similarity transformation affects spin-orbit interactions.Comment: 17 pages, latex fil
Toxic Cyanobacteria Aerosols: Tests of Filters for Cells
Aerosolization of toxic cyanobacteria released from the surface of lakes is a new area of study that could uncover a previously unknown route of exposure to toxic cyanobacteria. Since toxic cyanobacteria may be responsible for adverse human health effects, methods and equipment need to be tested and established for monitoring these airborne bacteria. The primary focus of this study was to create controlled laboratory experiments that simulate natural lake aerosol production. I set out to test for the best type of filter to collect and analyze the aerosolized cells as small as 0.2-2.0 µm, known as picoplankton. To collect these aerosols, air was vacuumed from just above a sample of lake water passing through either glass fiber filters (GFF) or 0.22 µm MF-Millipore™ membrane filters (0.22 Millipore™). Filter collections were analyzed through epiflourescence microscopy for determining cell counts. Data analysis revealed that 0.22 Millipore™ filters were the best option for cell enumeration providing better epiflourescence optical quality and higher cell counts
Initial bound state studies in light-front QCD
We present the first numerical QCD bound state calculation based on a
renormalization group-improved light-front Hamiltonian formalism. The QCD
Hamiltonian is determined to second order in the coupling, and it includes
two-body confining interactions. We make a momentum expansion, obtaining an
equal-time-like Schrodinger equation. This is solved for quark-antiquark
constituent states, and we obtain a set of self-consistent parameters by
fitting B meson spectra.Comment: 38 pages, latex, 5 latex figures include
Similarity Renormalization Group for Nucleon-Nucleon Interactions
The similarity renormalization group (SRG) is based on unitary
transformations that suppress off-diagonal matrix elements, forcing the
hamiltonian towards a band-diagonal form. A simple SRG transformation applied
to nucleon-nucleon interactions leads to greatly improved convergence
properties while preserving observables, and provides a method to consistently
evolve many-body potentials and other operators.Comment: 5 pages, 6 figures (8 figure files); references updated and
acknowledgment adde
Stability of Gravitational and Electromagnetic Geons
Recent work on gravitational geons is extended to examine the stability
properties of gravitational and electromagnetic geon constructs. All types of
geons must possess the property of regularity, self-consistency and
quasi-stability on a time-scale much longer than the period of the comprising
waves. Standard perturbation theory, modified to accommodate time-averaged
fields, is used to test the requirement of quasi-stability. It is found that
the modified perturbation theory results in an internal inconsistency. The
time-scale of evolution is found to be of the same order in magnitude as the
period of the comprising waves. This contradicts the requirement of slow
evolution. Thus not all of the requirements for the existence of
electromagnetic or gravitational geons are met though perturbation theory. From
this result it cannot be concluded that an electromagnetic or a gravitational
geon is a viable entity. The broader implications of the result are discussed
with particular reference to the problem of gravitational energy.Comment: 40 pages, 5 EPS figures, uses overcite.st
Companions to peculiar red giants: HR 363 and HR 1105
Recent IUE observations of two Tc-deficient S-type peculiar red giants that are also spectroscopic binaries, HR 363 and HR 1105 are reported. A 675 min SWP exposure of HR 363 shows emission lines of O I 1304 and Si II 1812 and a trace of continuum. Compared to the M giants, the far UV flux may be relatively larger, indicating a possible contribution from a white dwarf companion, but no high temperature emission lines are seen to indicate that this is an interacting system where mass-transfer recently occurred. However, HR 1105 appears to have a highly variable UV companion. In 1982, no UV flux was discerned for this system, but by 1986 C IV was strong, increasing by a factor of 3 in 1987 with prominent lines of Si III, C III, O III, Si IV, and N V. Using orbital parameters, these observations are consistent with high activity occuring when the side of the S-star primary illuminated by the companion faces the Earth, but since the IUE data were taken over 3 orbits, a secular change in the UV component cannot be excluded
Perturbative Tamm-Dancoff Renormalization
A new two-step renormalization procedure is proposed. In the first step, the
effects of high-energy states are considered in the conventional (Feynman)
perturbation theory. In the second step, the coupling to many-body states is
eliminated by a similarity transformation. The resultant effective Hamiltonian
contains only interactions which do not change particle number. It is subject
to numerical diagonalization. We apply the general procedure to a simple
example for the purpose of illustration.Comment: 20 pages, RevTeX, 10 figure
Analytic Treatment of Positronium Spin Splittings in Light-Front QED
We study the QED bound-state problem in a light-front hamiltonian approach.
Starting with a bare cutoff QED Hamiltonian, , with matrix elements
between free states of drastically different energies removed, we perform a
similarity transformation that removes the matrix elements between free states
with energy differences between the bare cutoff, , and effective
cutoff, \lam (\lam < \Lam). This generates effective interactions in the
renormalized Hamiltonian, . These effective interactions are derived
to order in this work, with . is renormalized
by requiring it to satisfy coupling coherence. A nonrelativistic limit of the
theory is taken, and the resulting Hamiltonian is studied using bound-state
perturbation theory (BSPT). The effective cutoff, \lam^2, is fixed, and the
limit, 0 \longleftarrow m^2 \alpha^2\ll \lam^2 \ll m^2 \alpha \longrightarrow
\infty, is taken. This upper bound on \lam^2 places the effects of
low-energy (energy transfer below \lam) emission in the effective
interactions in the sector. This lower bound on \lam^2
insures that the nonperturbative scale of interest is not removed by the
similarity transformation. As an explicit example of the general formalism
introduced, we show that the Hamiltonian renormalized to reproduces
the exact spectrum of spin splittings, with degeneracies dictated by rotational
symmetry, for the ground state through . The entire calculation is
performed analytically, and gives the well known singlet-triplet ground state
spin splitting of positronium, . We discuss remaining
corrections other than the spin splittings and how they can be treated in
calculating the spectrum with higher precision.Comment: 46 pages, latex, 3 Postscript figures included, section on remaining
corrections added, title changed, error in older version corrected, cutoff
placed in a windo
- …