3,290 research outputs found

    Characterizing and attributing the warming trend in sea and land surface temperatures

    Get PDF
    Because of low-frequency internal variability, the observed and underlying warming trends in temperature series can be markedly different. Important differences in the observed nonlinear trends in hemispheric temperature series suggest that the northern and southern hemispheres have responded differently to the changes in the radiative forcing. Using recent econometric techniques, we can reconcile such differences and show that all sea and land temperatures share similar time series properties and a common underlying warming trend having a dominant anthropogenic origin. We also investigate the interhemispheric temperature asymmetry (ITA) and show that the differences in warming between hemispheres are in part driven by anthropogenic forcing but that most of the observed rapid changes is likely due to natural variability. The attribution of changes in ITA is relevant since increases in the temperature contrast between hemispheres could potentially produce a shift in the Intertropical Convergence Zone and alter rainfall patterns. The existence of a current slowdown in the warming and its causes are also investigated. The results suggest that the slowdown is a common feature in global and hemispheric sea and land temperatures that can, at least partly, be attributed to changes in anthropogenic forcing.info:eu-repo/semantics/publishedVersio

    Equivariant estimation of a mean vector μ of N(μ, Σ) with μ′Σ−1μ = 1 or Σ−12μ = c or Σ = σ2μ′μl

    Get PDF
    AbstractThis paper considers the problems of estimating a mean vector μ under constraint μ′Σ−1μ = 1 or Σ−12μ = c and derives the best equivariant estimators under the loss (a − μ)′ Σ−1(a − μ), which dominate the MLE's uniformly. The results are regarded as multivariate extensions of those with known coefficient of variation in a univariate case. As a particular case for μ′Σ−1μ = c, the case Σ = σ2μ′μI is also treated

    Statistically derived contributions of diverse human influences to twentieth-century temperature changes

    Full text link
    The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8 °C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.F.E. acknowledges financial support from the Consejo Nacional de Ciencia y Tecnologia (http://www.conacyt.gob.mx) under grant CONACYT-310026, as well as from PASPA DGAPA of the Universidad Nacional Autonoma de Mexico. (CONACYT-310026 - Consejo Nacional de Ciencia y Tecnologia; PASPA DGAPA of the Universidad Nacional Autonoma de Mexico

    Wavefield characteristics and spatial incoherency - a comparative study from Argostoli rock- and soil-site dense seismic arrays

    Get PDF
    International audienceThe current article presents the results from the analysis of the seismic events recorded from a dense array located on a rock site at Argostoli, Cephalonia Island, Greece. The objective of the study is to explore to what extent the non-direct, diffracted surface waves influence the seismic wavefield at a rock site, to investigate the loss of coherency of ground motions and to compare the results with those from a previously studied similar array located at an adjacent small, shallow sedimentary valley. The array consists of 21 velocimeters encompassing a central station in four concentric circles with diameters 20, 60, 180 and 360 m. The analyzed seismic dataset includes 40 events with magnitudes ranging from 2 to 5 and epicentral distance up to 200 km. MUSIQUE algorithm has been used to analyze the seismic wavefield by extracting the backazimuth and slowness of the dominant incoming waves and identifying the Love and Rayleigh waves. Lagged coherency has been estimated for all the available station pairs in the array and the results from the entire dataset have been averaged at four separation distance intervals, 10-20, 20-30, 30-40, 80-90 m. The results were also compared with those from a similar array located on an adjacent small, shallow sedimentary valley. The analysis suggests that about 20percent energy of the wavefield could be characterized as diffracted Love and Rayleigh waves, primarily arriving from the north-east and north-south directions, respectively. The spatial coherency estimations at the rock site are, generally, observed to be larger than those from the sedimentary array, especially at frequencies below 5 Hz. The directionality of coherency estimates observed from the soil array is absent in case of the rock array data. Comparison with the widely-quoted parametric models reveals that there is little correlation between the decay of coherency observed at the rock site and the models. The significant difference observed between the results of the rock and soil array indicate that the spatial incoherency is largely site dependent and could be potentially associated with the formation of locally generated wavefiel

    Actions of the braid group, and new algebraic proofs of results of Dehornoy and Larue

    Full text link
    This article surveys many standard results about the braid group with emphasis on simplifying the usual algebraic proofs. We use van der Waerden's trick to illuminate the Artin-Magnus proof of the classic presentation of the algebraic mapping-class group of a punctured disc. We give a simple, new proof of the Dehornoy-Larue braid-group trichotomy, and, hence, recover the Dehornoy right-ordering of the braid group. We then turn to the Birman-Hilden theorem concerning braid-group actions on free products of cyclic groups, and the consequences derived by Perron-Vannier, and the connections with the Wada representations. We recall the very simple Crisp-Paris proof of the Birman-Hilden theorem that uses the Larue-Shpilrain technique. Studying ends of free groups permits a deeper understanding of the braid group; this gives us a generalization of the Birman-Hilden theorem. Studying Jordan curves in the punctured disc permits a still deeper understanding of the braid group; this gave Larue, in his PhD thesis, correspondingly deeper results, and, in an appendix, we recall the essence of Larue's thesis, giving simpler combinatorial proofs.Comment: 51`pages, 13 figure

    An algorithm to obtain global solutions of the double confluent Heun equation

    Full text link
    A procedure is proposed to construct solutions of the double confluent Heun equation with a determinate behaviour at the singular points. The connection factors are expressed as quotients of Wronskians of the involved solutions. Asymptotic expansions are used in the computation of those Wronskians. The feasibility of the method is shown in an example, namely, the Schroedinger equation with a quasi-exactly-solvable potential

    Improvement of the Embarrassingly Parallel Search for Data Centers

    Get PDF
    International audienceWe propose an adaptation of the Embarrassingly Parallel Search (EPS) method for data centers. EPS is a simple but efficient method for parallel solving of CSPs. EPS decomposes the problem in many distinct subproblems which are then solved independently by workers. EPS performed well on multi-cores machines (40), but some issues arise when using more cores in a datacenter. Here, we identify the decomposition as the cause of the degradation and propose a parallel decomposition to address this issue. Thanks to it, EPS gives almost linear speedup and outperforms work stealing by orders of magnitude using the Gecode solver
    • …
    corecore