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Improvement of the Embarrassingly Parallel Search
for data centers

Jean-Charles Régin ??, Mohamed Rezgui ∗∗, and Arnaud Malapert ∗∗

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France

Abstract. We propose an adaptation of the Embarrassingly Parallel Search (EPS)
method for data centers. EPS is a simple but efficient method for parallel solving
of CSPs. EPS decomposes the problem in many distinct subproblems which are
then solved independently by workers. EPS performed well on multi-cores ma-
chines (40), but some issues arise when using more cores in a datacenter. Here,
we identify the decomposition as the cause of the degradation and propose a par-
allel decomposition to address this issue. Thanks to it, EPS gives almost linear
speedup and outperforms work stealing by orders of magnitude using the Gecode
solver.

1 Introduction

Several methods for parallelizing the search in constraint programming (CP) have been
proposed. The most famous one is the work stealing [12,14,5,16,3,8]. This method uses
the cooperation between computation units (workers) to divide the work dynamically
during the resolution. Recently, [13] introduced a new approach named Embarrass-
ingly Parallel Search (EPS), which has been shown competitive with the work stealing
method.

The idea of EPS is to decompose statically the initial problem into a huge number
of subproblems that are consistent with the propagation (i.e. running the propagation
mechanism on them does not detect any inconsistency). These subproblems are added
to a queue which is managed by a master. Then, each idle worker takes a subproblem
from the queue and solves it. The process is repeated until all the subproblems have
been solved. The assignment of the subproblems to workers is dynamic and there is
no communication between the workers. EPS is based on the idea that if there is a
large number of subproblems to solve then the resolution times of the workers will be
balanced even if the resolution times of the subproblems are not.

In other words, load balancing is automatically obtained in a statistical sense. In-
terestingly, experiments of [13] have shown that the number of subproblems does not
depend on the initial problem but rather on the number of workers. Moreover, they have
shown that a good decomposition has to generate about 30 subproblems per worker.
Experiments have shown good results on a multi-cores machine (40 cores/workers).

?? This work was granted access to the HPC and visualization resources of ”Centre de Calcul
Interactif” hosted by the University of Nice Sophia Antipolis. It was also partially supported
by OSEO, with the project ISI ”Pajero”.



Preliminary experimental results of this method on a data center (512 cores/workers)
have shown that the scalability of the overall resolution time without the decomposition
is very good. However, the decomposition becomes more difficult and the relative part
of the decomposition compared to the overall resolution time grows with the number of
workers. There are several reasons for that. First, the number of subproblems that have
to be generated grows linearly with the number of cores. Second, the overall resolution
time diminishes when the number of workers is increased. At last, the decomposition
of the EPS method as proposed in [13] is not efficiently parallelized. In this paper we
propose to address this issue by designing an efficient parallel decomposition of the
initial problem.

A naive decomposition in parallel has been proposed in [13]. It splits the initial
problem into as many subproblems as there are workers and assigns a subproblem to
each worker. Then, each worker decomposes its subproblem into 30 subproblems. This
gains a factor of 2 or 3 in comparison with a sequential decomposition. This is enough
when the number of workers is limited (40 for instance) but it is no longer an efficient
method with hundreds of workers. The gain is limited because there is no reason to
have equivalent subproblems to decompose. However, from this naive algorithm we
learn several things:

1. the difference of total work (i.e. activity time in EPS) made by the workers de-
creases when the number of subproblems increases. This is not a linear relation.
There is a huge difference between the activity time of the workers when there
are less than 5 subproblems per worker. These differences decrease when there are
more than 5 subproblems per worker.

2. a simple decomposition into subproblems that may be inconsistent causes quickly
some issues because inconsistencies are detected very quickly.

3. splitting an initial problem into a small set of subproblems is fast compared to the
overall decomposition time and compared to the overall resolution time.

From these observations we understand that we will have to find a compromise and
we propose an iterative process decomposing the initial problem in 3 phases. In the first
phase, we want to decompose it into only few subproblems because the relative cost is
small even if we have an unbalanced workload. However, we should be careful with the
first phase (i.e. starting with probably inconsistent subproblems) because it can have
an impact on the performance. At last, the most important thing seems to generate 5
subproblems because we could restart from these subproblems to decompose more and
such a decomposition should be reasonably well balanced.

Thus, we propose a method which has 3 main phases:

– An initial phase where we generate as quickly as possible one subproblem per
worker.

– A main phase which aims at generating 5 subproblems per worker. Each subprob-
lem is consistent with the propagation. This phase can be divided into several steps
for reaching that goal while balancing the work among the workers.

– A final phase which consists of generating 30 subproblems per worker from the set
of subproblems computed by the main phase.



The paper is organized as follows. First we recall some preliminaries. Next, we
describe the existing decomposition and we present an efficient parallelization of the
decomposition. Then, we give some experimental results. At last, we conclude.

2 Preliminaries

A worker is a computation unit. Most of the time, it corresponds to a core. We will
consider that there are w workers. We present the two methods that we will compare.

2.1 Work stealing

The work stealing method was originally proposed in [2] and was first implemented in
Lisp parallel machines [4]. It splits the problem dynamically during the resolution. The
workers solve the subproblems and when a worker finishes a subproblem, it asks the
other workers for more work. In general, it is carried out as follows: when a worker W
does not have work, it asks another worker V to get some work. If V agrees to give
some of its work, then its splits the current subproblem into two subproblems and gives
one to W . We say that W ”steals” some work of V . If V does not agree to give some
work to W , then W asks another worker U for some work until it gets some work or
all workers have been solicited.

This method has been implemented in a lot of solvers (Comet [8] or ILOG Solver
[12] for instance), and into several manners [14,5,16,3] depending on whether the work
to be done is centralized or not, on the way the search tree is split, or on the communi-
cation method between workers. Work stealing attempts to solve partially the balancing
issue of the workload by decomposing dynamically the subproblems.
When a worker is starving, it should not steal easy problems, because it would ask
work again almost instantly. It happens frequently at the end of the search when many
workers have no subproblems to solve. Thus, there are a lot of unnecessary communi-
cations. [11] proposes to use a threshold to avoid these unnecessary communications
but its efficiency depends on the search space. Generally, this method scales well for a
few workers but it is difficult to keep a linear speedup with a huge number of workers.

Some methods [15,5] attempt to increase the scalability. In [15], the authors propose
a masters/workers approach. Each master has its own workers. The search space is
divided between the different masters, then each master puts its attributed sub-trees in
a work pool to dispatch to the workers. When a node of the sub-tree is detected that is
a root of large sub-tree, the workers generate a large number of sub-trees and put them
in a the work pool in order to have a better load balancing.

In [5], the authors experiment with up to 64 cores using a work stealing strategy.
A master centralizes all pieces of information (bounds, solutions and requests). The
master estimates which worker has the largest amount of work in order to give some
work to an idle worker.

Another drawback is that the implementation of the work stealing is intrusive and is
strongly dependent of the solver which requires to have a very good knowledge of the
CP solver and to access to some internal functions. Some methods try to address this
issue [7].



2.2 EPS

The Embarassingly Paralell Search (EPS) method has been defined in [13]. This method
splits statically the initial problem into a large number of subproblems that are consis-
tent with the propagation and puts them in a queue. Once this decomposition is over,
the workers take dynamically the subproblems from the queue when they are idle. Pre-
cisely, EPS relies on the following steps:

• it splits a problem into p subproblems such as p ≥ w and pushes them into the
queue.

• each worker takes dynamically a subproblem in the queue and solves it.
• a master monitors the concurrent access of the queue.
• the resolution ends when all subproblems are solved.

For optimization problems, the master manages the value of the objective. When a
worker takes a subproblem from the queue, it also takes the best objective value com-
puted so far. And when a worker solves a subproblem it communicates to the worker
the value of the objective function. Note that there is no other communication, that is
when a worker finds a better solution, the other workers that are running cannot use it
for improving their current resolution.

The reduction of communication is an advantage over the work stealing. Further-
more, a resolution in parallel can be replayed by saving the order in which the subprob-
lems have been executed. This costs almost nothing and helps a lot the debugging of
applications.

2.3 Definitions

A constraint network CN = (X ,D, C) is defined by:

• a set of n variables X = {x1, x2, . . . , xn}
• a set of n finite domains D = {D(x1), D(x2), . . . , D(xn)} with D(xi) the set of

possible values for the variable xi,
• a set of constraints between the variables C = {C1, C2, . . . , Ce}. A constraint Ci

is defined on a subset of variables XCi
= {xi1 , xi2 , . . . , xij} of X with a subset of

Cartesian productD(xi1)×D(xi2)× . . .×D(xij), that states which combinations
of values of variables {xi1 , xi2 , . . . , xij} are compatible.

Each constraint Ci is associated with a filtering algorithm that removes values of
the domains of its variables that are not consistent with it. The propagation mechanism
applies filtering algorithms of C to reduce the domains of variables in turn until no
reduction can be done. For convenience, we will use the word ”problem” for designing
a constraint network when it is used to represent the constraint network and not the
search for a solution. We say that a problem P is consistent with the propagation if and
only if running the propagation mechanism on P does not trigger a failure.

Notation 1 Let Q be a problem, we will denote by D(Q, x) the resulting domain of the
variable x when the propagation mechanism has been applied to Q



3 Decomposition algorithms

3.1 Sequential decomposition

EPS method is based on the decomposition of the initial problem into p subproblems
consistent with the propagation. It has been shown in [13] that it is essential to gener-
ate subproblems consistent with the propagation, because the parallel version of search
must not consider problems that would have not been considered by the sequential ver-
sion of the serach.
If we aim at generating p subproblems then we can apply the simple following algo-
rithm, called SIMPLEDECOMPOSITIONMETHOD.

• we use any variable ordering1 x1, ..., xn.
• we compute the value k such that |D(x1)| × . . . × |D(xk−1)| < p ≤ |D(x1)| ×
. . .× |D(xk−1)| × |D(xk)|.

• we generate all the assignments of the variables from x1 to xk and we regroup them
if we have too many assignments.

Algorithm 1: Some useful functions
SIMPLEDECOMPOSITION(CN , p)

computes the value k such that |D(x1)| × . . .× |D(xk−1)| < p ≤ |D(x1)| × . . .×
|D(xk−1)| × |D(xk)|
generates all the assignments of the variables from x1 to xk
regroups them and put the resulting subproblems into S
returns the tuple (S, k)

COMPUTEDEPTH(CN , cardS, δ, p)
returns d such as cardS × |D(xδ+1)| × . . . × |D(xd−1)| < p ≤ cardS ×
|D(xδ+1)| × . . .× |D(xd−1)| × |D(xd)|

GETDOMAINS(S)
returns the set of domains of D = {D(S, x1), D(S, x2), . . . , D(S, xn)} such that
∀x ∈ X D(S, x) = ∪P∈SD(P, x)

GENERATESUBPROBLEMS(CN , S, d)
runs a search for solution based on a DBDFS with d as depth limit on the constraint
network formed by CN and the table constraint defined from the elements of S.
returns the set of leaves that are not a failure.

Generating subproblems consistent with the propagation is a more complex task.
In [13], a depth bounded depth first search (DBDFS) is used for computing such

problems. More precisely, this decomposition method is defined as follows. First, a
static ordering of the variable is considered: x1, x2, . . . , xn. Usually the variables are
sorted by non decreasingly domain sizes. Then, the main step of the algorithm is ap-
plied: define a depth d and perform a search procedure based on a DBDFS with d as

1 In this paper, we do not study the influence of any specific ordering.



limit. This search triggers the propagation mechanism each time a modification occurs.
For each leaf of this search which is not a failure, the variables x1, ..., xd are assigned
and so the subproblem defined by this assignment is consistent with the propagation.
Thus the set of leaves defines a set S of subproblems. Next, if S is large enough, then
the decomposition is finished. Otherwise, we apply again the main step until we reach
the expected number of subproblems. However, we do not restart the main step from
scratch and we use the previous set for improving the next computations in two ways.
We use the cardinal of S for computing the new depth and we define a table constraint
from the elements of S to avoid recomputations at the beginning of the search.

Algorithm 2: SEQUENTIALDECOMPOSITION

SEQUENTIALDECOMPOSITION(CN , p)
// CN is a constraint network; p the number of subproblems to be generated
S ← ∅; d← 0
while |S| < p do

d←COMPUTEDEPTH(CN , |S|, d, p)
S ←GENERATESUBPROBLEMS(CN , S, d)
if S = ∅ then return ∅
CN ← (X ,GETDOMAINS(S), C)

return S

An important part of this method is the computation of the next depth. Currently it
is simply estimated from the current number of subproblems that have been computed
at the previous depth and the size of the domain. If we computed |S| subproblems at the
depth δ and if we want to have p subproblems then we search for the value d such that
|S|×|D(xδ+1)|×. . .×|D(xd−1)| < p ≤ |S|×|D(xδ+1)|×. . .×|D(xd−1)|×|D(xd)|

Algorithm 1 gives some useful functions. Algorithm 2 is a possible implementation
of the sequential decomposition.

3.2 A naive parallel decomposition

A parallelization of the decomposition is given in [13]. The initial problem is split into
w subproblems by domain splitting. Each worker receives one of these subproblems
and decomposes it into p/w subproblems consistent with the propagation. The master
gathers all computed subproblems. If a worker is not able to generate p/w subprob-
lems because it is not possible, the master asks the other workers to decompose their
subproblems into smaller ones until reaching the right number of subproblems.

4 The new parallel decomposition

The method we propose has 3 main phases. A fast initial stating the process, a main
phase, which is the core of the decomposition and a final phase ensuring that 30 sub-
problems per worker are generated. In the main phase, we try to progress in the decom-
position and to manage the imbalance of the work load between workers, because we



Algorithm 3: EPS: Improved Decomposition in Parallel
WORKERDEC(CN , Q, d)

S ← ∅
run in parallel

while Q 6= ∅ do
pick P ∈ Q and remove P from Q
S′ ←GENERATESUBPROBLEMS(CN , P, d)
S ← S ∪ S′

return S

DECOMPOSE(CN , S, numspb)
while |S| < numspb do

d←COMPUTEDEPTH(CN , |S|, d, numspb)
S ←WORKERDEC(CN , S, d)
if S = ∅ then return ∅
CN ← (X ,GETDOMAIN(S), C)

return S

PARALLELDECOMPOSITION(CN , numPbforStep, numStep, p)
(S, d)←SIMPLEDECOMPOSITION(CN , numPbforStep[0])
S ←WORKERDEC(CN , S, d)
CN ← (X ,GETDOMAIN(S), C)
for i=0 to numStep-1 do

S ←DECOMPOSE(CN , S, numPbforStep[i])
if S = ∅ or |S| ≥ p then return S

return S

cannot avoid this imbalance. We progress by small steps of decomposition that are fol-
lowed by synchronization of the workers and by merging the set of subproblems com-
puting by each worker in order to correct the imbalance in the future. In other words,
we ask the workers to decompose any subproblems into a small number of subprob-
lems, then we merge all these subproblems (the union of subproblems lists computed
by each worker) and ask again to decompose each subproblem into a small number of
subproblems. When the number of generated subproblems is close to 5 subproblems
per worker we know that we will have less problem with the load balancing. Thus, we
can move on and trigger the last phase: the decomposition of the subproblems until we
reach 30 subproblems per workers. Precisely, the phases are defined as follows:

– An initial phase where we decompose as quickly as possible the problem into as
many subproblems as we have workers

– A main phase which aims at generating 5 subproblems per worker. Each subprob-
lem is consistent with the propagation. This phase is divided into several steps in
order to balance the work among the workers.

– A final phase which consists of generating 30 subproblems per worker from the set
of subproblems computed by the main phase.

Algorithm 3 is a possible implementation of this new parallel decomposition.



The remaining question is the definition of the number of steps and the number of
subproblems per worker that have to be generated for each step of the second phase.
Clearly the decomposition of the first phase is not good and we have to stop the work
for redistributing the subproblems to the worker as quickly as possible. The experiments
have shown that we have to stop when 1 subproblem consistent with the propagation per
worker have been generated. Then, a stop at 5 subproblems per worker will be enough
for the second phase.

5 Experiments

Execution environment All the experiments have been made on the data center ”Centre
de Calcul Interactif” hosted by the University of Nice Sophia Antipolis. It has 1152
cores, spread over 144 Intel E5-2670 processors, with a 4,608GB memory and runs
under Linux (http://calculs.unice.fr/fr). We were allowed to use to up to
512 cores simultaneously for our experiments. The data center uses a scheduler (OAR)
that manages jobs (submissions, executions, failures).

Implementation details EPS is implemented on the top of the solver gecode 4.0.0 [1].
We use MPI (Message Passing Interface), a standardized and portable message-passing
system to exchange information between processes. Master and workers are MPI pro-
cesses. Each process reads a FlatZinc model to init the problem and only jobs are ex-
changed through messages between master and workers.

Benchmark Instances We report results for the twenty most significant instances we
found. Two types of problems are used: enumeration problems and optimization prob-
lems. Some of them are from CSPLib and have been modeled by Håkan Kjellerstrand
(see [6]). The others come from the minizinc distribution (see [9]).

To study the decomposition, we select hard instances (i.e. more than 500s and less
than 1h) with the Gecode solver.

Tests It is important to point out that the decomposition must finish in order to begin
the resolution of the generated subproblems.
We use the following definitions:

• tdec and tres denote respectively the total decomposition time (by the master and
the workers) and the parallel solving time of the subproblems. So, the overall resolution
time t is equal to tdec + tres

• t0 is the resolution time of the instance in sequential
• su = t0

t is the speedup of the overall resolution time compared with the sequential
resolution time

• sures =
t0
tres

is the speedup of the overall resolution time without taking account
the decomposition time compared with the sequential resolution time

• partdec =
tdec
t is the ratio in % between the decomposition time and the overall

resolution time

http://calculs.unice.fr/fr


5.1 Sensitivity analysis

Depth of the decomposition Figure 1 shows the evolution of the depth depending
on the number of workers. As expected, the depth of the decomposition grows with
the number of workers. Sometimes, the depth is very high for some instances like
ghoulomb 3-7-20 or talent scheduling alt film117 (see table 3). The reason is that the
depth estimation we made is based on the Cartesian product of the domains which is
sometimes wrong because there are many subproblems that are not consistent with the
propagation, so the decomposition goes to a higher depth than the number of considered
domains to generate 30 subproblems per worker consistent with the propagation.

Fig. 1. Depth to reach 30 subproblems per worker related to the number of workers.

Sequential decomposition issue Table 1 gives the part of the sequential decomposi-
tion according to the overall resolution time with 16 workers and 512 workers. For 16
workers, the sequential decomposition takes a small part of the overall resolution time
(an average of 3.5%) because it generates few subproblems (16 ∗ 30 = 480 subprob-
lems). Since the number of subproblems to generate is greater with 512 workers than
16 workers (16*30 vs 512*30), the sequential decomposition takes a significant time
compared to the overall resolution time (an average of 72.5%). Thus, it takes more time
to generate and impacts on the global performances.



Table 1. Part of the sequential decomposition according to the overall resolution time to generate
30 subproblems per worker for 16 workers and 512 workers.

Instance partdec for 16 workers partdec for 512 workers
16 ∗ 30 = 480 subproblems 512 ∗ 30 = 15360 subproblems

% %

market split s5-02 0.7% 33.5%
market split u5-09 0.6% 29.4%
market split s5-06 0.6% 37.6%
prop stress 0600 4.7% 81.0%
nmseq 400 4.0% 85.3%
prop stress 0500 3.5% 81.7%
fillomino 18 6.2% 88.7%
steiner-triples 09 3.1% 70.5%
nmseq 300 8.1% 91.2%

golombruler 13 1.7% 78.0%
cc base mzn rnd test.11 6.1% 83.4%
ghoulomb 3-7-20 6.9% 91.3%
pattern set mining k1 yeast 4.9% 83.6%
still life free 8x8 8.8% 90.6%
bacp-6 2.8% 69.7%
depot placement st70 6 3.8% 79.5%
open stacks 01 wbp 20 20 1 7.1% 86.7%
bacp-27 3.8% 76.5%
still life still life 9 6.0% 88.5%
talent scheduling alt film117 5.3% 91.1%

geometric average(%) 3.5% 72.5%

Fixing the parallel decomposition parameters Now, we must choose the number of
subproblems to generate for the main phase. We select some representative instances to
fix a good number of subproblems per worker. Table 2 shows the total decomposition
time for some instance to choose the number of subproblems for the main phase. We no-
tice that 5 is a good choice. Starting from 7 subproblems per worker, the performances
begin to drop.

Table 2. Decomposition time comparison (in seconds) depending on the fixed number of sub-
problems in the second phase with 512 workers.

Instance numPbforStep[1]

3 4 5 6 7

prop stress 0600 10.5 8.6 7.5 9.1 13.0
cc base mzn rnd test.11 21.5 12.1 10.1 14.5 17.8
ghoulomb 3-7-20 16.4 13.3 12.1 16.5 18.1
pattern set mining k1 yeast 8.5 6.9 5.6 9.2 13.4
still life free 8x8 11.5 8.1 8.3 12.7 14.6

total decomposition time(s) 68.4 49.0 43.6 62.0 76.9



Table 3. Comparison of the decomposition algorithms with 512 workers.

Instance Seq. Decseq Dec//1 Dec//2
t0 sures tdec su tdec su tdec su

s r s r s r s r

market split s5-02 3314.4 459.5 3.6 305.5 1.3 388.7 1.0 405.9
market split u5-09 3266.6 455.0 3.0 321.2 1.1 394.7 0.8 411.8
market split s5-06 3183.9 436.0 4.4 272.0 2.2 334.8 1.0 384.0
prop stress 0600 2729.2 213.9 54.4 40.7 21.3 80.0 7.5 193.1
nmseq 400 2505.8 429.7 33.7 63.3 14.9 120.9 4.6 240.4
prop stress 0500 1350.6 265.2 22.7 48.6 9.3 93.7 3.3 161.6
fillomino 18 763.9 301.9 19.8 34.2 6.4 85.7 2.5 150.7
steiner-triples 09 604.9 443.8 3.3 130.8 1.8 191.5 0.5 332.0
nmseq 300 555.3 309.0 18.7 27.1 7.9 57.1 2.4 131.7

golombruler 13 1303.9 492.0 9.4 92.7 1.4 322.9 0.4 427.9
cc base mzn rnd test.11 3279.5 196.5 83.8 32.6 35.5 62.8 10.1 122.6
ghoulomb 3-7-20 2993.8 279.2 112.6 24.3 50.0 49.3 12.1 131.1
pattern set mining k1 yeast 2871.3 285.5 51.3 46.8 21.0 92.4 5.6 183.2
still life free 8x8 2808.9 331.0 82.0 31.1 33.2 67.4 8.3 166.9
bacp-6 2763.3 473.1 13.4 143.5 5.4 245.0 1.5 378.9
depot placement st70 6 2665.1 345.6 29.9 70.9 12.5 131.8 3.6 235.1
open stacks 01 wbp 20 20 1 1523.2 280.7 35.4 37.3 15.6 72.3 4.0 160.8
bacp-27 1499.7 445.3 11.0 104.5 4.4 193.8 1.2 326.5
still life still life 9 1145.1 347.9 25.2 40.1 9.4 90.4 3.0 182.9
talent scheduling alt film117 566.1 386.4 15.0 34.4 6.0 75.8 1.8 175.8

total(s) and geom. average(r) 41694.5 347.1 632.6 66.4 260.8 124.8 75.0 223.9

Comparison of the decomposition algorithms We denoteDecseq ,Dec//1 andDec//2
respectively the sequential decomposition, the naive parallel decomposition and the new
parallel decomposition.

Table 3 compares the decomposition time between different decomposition meth-
ods with 512 workers and the speedup su of each decomposition algorithm. On the first
hand, we observe that the average speedup of the resolution time without the decompo-
sition time is closed to a linear factor (347.1). On the other hand, we notice that Dec//1
improves Decseq by a factor of 3.4 and Dec//2 improves Dec//1 by a factor of 2.4. So,
the new parallel decomposition method improves the decomposition. Consequently, the
new parallel decomposition Dec//2 improves the overall speedup su from 66.4 with
the sequential decomposition Decseq to 223.9.

Scaling analysis We test the scalability of EPS for different numbers of workers. Table
4 describes the details of the speedups. We notice that the resolution of Golomb-ruler
and the market-split instances scales very well with EPS (speedups su reach around
400 for 512 workers). Instances cc base mzn rnd test.11 and ghoulomb 3-7-20 give
the worst results with all workers. In general, we observe an average speedup near to
w/2. Figure 2 describes the speedup obtained by EPS for the decomposition phase,



the resolution phase without taking account the decomposition phase and the overall
resolution with all instances (by a geometric average) as a function of the number of
workers. EPS scales very well with a near-linear factor of gain for the resolution phase.
Thanks to the parallelization of decomposition, EPS obtains good results for the overall
resolution.

Fig. 2. Geometric Speedup (all instances) for each number of workers with EPS.



Table 4. Speedup detailed for each instance and for each number of workers with EPS.

Instance number of workers
t0(s) su
1w 8w 16w 32w 64w 96w 128w 256w 512w

market split s5-02 3314.4 7.3 14.2 25.4 50.7 69.7 101.5 201.7 405.9
market split u5-09 3266.6 7.3 14.3 25.7 51.5 68.6 103.0 207.4 411.8
market split s5-06 3183.9 6.4 12.7 24.0 48.0 64.0 96.0 197.5 384.0
prop stress 0600 2729.2 3.8 6.7 16.1 24.1 32.2 48.3 104.2 193.1
nmseq 400 2505.8 4.1 7.2 15.0 30.1 40.1 60.1 117.7 240.4
prop stress 0500 1350.6 2.5 4.4 13.1 20.2 26.9 40.4 81.8 161.6
fillomino 18 763.9 2.4 5.1 11.4 18.8 25.1 37.7 72.4 150.7
steiner-triples 09 604.9 5.7 12.3 21.7 41.5 55.3 83.0 143.2 332.0
nmseq 300 555.3 2.4 5.1 8.2 16.5 21.9 32.9 69.3 131.7

golombruler 13 1303.9 7.3 14.7 27.3 53.7 89.5 117.4 213.1 427.9
cc base mzn rnd test.11 3279.5 1.7 5.1 8.9 14.3 20.4 30.6 59.7 122.6
ghoulomb 3-7-20 2993.8 2.3 3.9 8.2 17.4 21.8 32.8 76.3 131.1
pattern set mining k1 yeast 2871.3 2.9 5.8 11.5 23.9 30.5 45.8 91.6 183.2
still life free 8x8 2808.9 2.6 6.4 10.4 20.9 27.8 41.7 83.5 166.9
bacp-6 2763.3 6.7 12.1 23.7 47.4 63.1 94.7 212.4 378.9
depot placement st70 6 2665.1 3.4 7.3 14.7 29.4 39.2 58.8 147.6 235.1
open stacks 01 wbp 20 20 1 1523.2 3.1 6.5 10.0 23.1 26.8 40.2 95.4 160.8
bacp-27 1499.7 5.6 11.2 20.4 43.8 54.4 81.6 214.3 326.5
still life still life 9 1145.1 3.1 6.1 11.4 22.9 30.5 45.7 89.4 182.9
talent scheduling alt film117 566.1 2.4 4.3 11.0 22.0 31.3 51.7 95.9 175.8

total (t0) or geometric average (su) 41694.5 3.7 7.5 14.7 28.3 37.9 56.7 117.3 223.9

Table 5. Comparison between work stealing and EPS with 512 workers.

Instance Seq. Work stealing EPS

time(s) time(s) su time(s) su

market split s5-02 3314.4 - - 8.2 405.9
market split u5-09 3266.6 - - 7.9 411.8
market split s5-06 3183.9 - - 8.3 384.0
prop stress 0600 2729.2 1426.4 1.9 14.1 193.1
nmseq 400 2505.8 - - 10.4 240.4
prop stress 0500 1350.6 670.0 2.0 8.4 161.6
fillomino 18 763.9 - - 5.1 150.7
steiner-triples 09 604.9 79.0 7.7 1.8 332.0
nmseq 300 555.3 - - 4.2 131.7

golombruler 13 1303.9 15.5 83.9 3.0 427.9
cc base mzn rnd test.11 3279.5 - - 26.8 122.6
ghoulomb 3-7-20 2993.8 575.4 5.2 22.8 131.1
pattern set mining k1 yeast 2871.3 299.8 9.6 15.7 183.2
still life free 8x8 2808.9 1672.8 1.7 16.8 166.9
bacp-6 2763.3 330.1 8.4 7.3 378.9
depot placement st70 6 2665.1 1902.9 1.4 11.3 235.1
open stacks 01 wbp 20 20 1 1523.2 153.9 9.9 9.5 160.8
bacp-27 1499.7 579.6 2.6 4.6 326.5
still life still life 9 1145.1 140.1 8.2 6.3 182.9
talent scheduling alt film117 566.1 95.5 5.9 3.2 175.8

total (time) or geometric average (su) 41694.5 7941 5.4 195.7 223.9



5.2 Comparison with work stealing

Table 5 shows a comparison between EPS and a work stealing implementation with
512 workers. The work stealing used in the datacenter is an MPI implementation based
on [10]. In our experiments, the work stealing obtains good speedup until 64 workers
but for more workers, the performances drop dramatically. With 512 workers, the aver-
age speedup of work stealing is 5.4. Many instances are not solved with 512 workers
whereas they are solved by the sequential resolution. However, the average speedup of
EPS is 223.9. Note that EPS is better than the work stealing on all selected instances.

6 Conclusion

The previous decomposition algorithms of the Embarrassingly Parallel Search are ac-
ceptable methods when there is only a few number of workers. These methods limit the
performance of EPS on a data center, that is on a system with hundreds of cores. In this
paper, we described an efficient parallel version of the decomposition. With paralleliz-
ing the problem decomposition and fixing 2 phases during the process, EPS gets a better
workload during the decomposition. Consequently, EPS reaches the scalability with a
data center and gives an average speedup at 223.9 with gecode for a set of benchmarks
on a machine with 512 cores. This clearly improves the work stealing approach which
does not scale well with hundred cores. EPS is more efficient by one or two orders of
magnitude.
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