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RESUMEN

Debido a la variabilidad interna de baja frecuencia, las tendencias del calentamiento observadas y subya-
centes en series de temperatura pueden ser marcadamente diferentes. Las temperaturas hemisféricas están 
caracterizadas por importantes discrepancias en las tendencias no lineales observadas, sugiriendo que los 
hemisferios norte y sur han respondido de manera diferente a los cambios en el forzamiento radiativo. Me-
diante la utilización de técnicas econométricas recientes es posible reconciliar estas diferencias y mostrar que 
todas las temperaturas terrestres y oceánicas comparten propiedades de series de tiempo similares, así como 
una tendencia subyacente común de origen antrópico. También se investiga la asimetría inter-hemisférica de 
temperatura (ITA, por sus siglas en inglés) y se muestra que la diferencia en el calentamiento entre hemisfe-
rios se debe en parte al forzamiento antrópico, pero que la mayoría de los cambios rápidos observados son 
probablemente producto de la variabilidad natural. La atribución de cambios en la ITA es importante porque 
los aumentos en el contraste de temperaturas entre hemisferios podrían ocasionar un desplazamiento de la 
zona intertropical de convergencia y alterar los patrones de precipitación. También se investigan la existencia 
y causas de una reciente ralentización en el calentamiento. Los resultados sugieren que dicha lentificación 
es una característica común de las temperaturas hemisféricas globales tanto en tierra como en el océano, y 
que puede atribuirse al menos parcialmente a cambios en el forzamiento antrópico.

ABSTRACT

Because of low-frequency internal variability, the observed and underlying warming trends in temperature 
series can be markedly different. Important differences in the observed nonlinear trends in hemispheric tem-
perature series suggest that the northern and southern hemispheres have responded differently to the changes 
in the radiative forcing. Using recent econometric techniques, we can reconcile such differences and show that 
all sea and land temperatures share similar time series properties and a common underlying warming trend 
having a dominant anthropogenic origin. We also investigate the interhemispheric temperature asymmetry 
(ITA) and show that the differences in warming between hemispheres are in part driven by anthropogenic 
forcing but that most of the observed rapid changes is likely due to natural variability. The attribution of 
changes in ITA is relevant since increases in the temperature contrast between hemispheres could potentially 
produce a shift in the Intertropical Convergence Zone and alter rainfall patterns. The existence of a current 
slowdown in the warming and its causes are also investigated. The results suggest that the slowdown is a 
common feature in global and hemispheric sea and land temperatures that can, at least partly, be attributed 
to changes in anthropogenic forcing.
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164 F. Estrada et al.

1.	 Introduction
The changes in climate experienced during the recent 
decades already had widespread impacts on human 
and natural systems (IPCC, 2014a). The description 
of trends in temperature series and their attribution 
to anthropogenic and natural factors is central to 
understanding the response of the climate system 
to changes in external forcing, the role of human 
activities in altering this system, and how the risk 
of larger impacts might be mitigated. As has been 
widely discussed in both the academic and political 
arenas, the implications of further significant anthro-
pogenic warming are far reaching and may call for 
considerable changes in economic, technological and 
societal trends (Stern, 2007; IPCC, 2014b; van den 
Bergh and Botzen, 2014).

Despite the differences in approaches (physical- 
or empirical-based), the existence of strong method-
ological debates (Triacca, 2005; Estrada et al., 2010; 
Estrada and Perron, 2014), as well as important mis-
matches between climate models’ reconstructions and 
observations (Stocker et al., 2013; Fyfe et al., 2016), 
almost all of the attribution studies to date arrive to 
the same conclusion: observed warming is anywhere 
from partially to dominantly anthropogenic (Bindoff 
et al., 2013). However, even if the attribution of the 
observed warming to human activities is no longer 
in question, there is still a need to improve and 
develop methods that can help to better understand 
how this phenomenon has manifested itself and to 
better gauge human interventions in the different 
expressions of a warming climate. In particular, it 
is important to extend current methodologies for de-
tecting and attributing changes in the rate of warm-
ing, such as periods of fast warming, slowdowns and 
pauses. These are currently the most relevant policy 
and scientific aspects in the fields of detection and 
attribution of climate change (Tollefson, 2014; Es-
trada and Perron, 2016; Tollefson, 2016; Kim et al., 
2017). For this matter, it is important to distinguish 
between the observed temperature trends and the 
underlying warming trends. The first is affected by 
natural variability, especially low-frequency oscil-
lations, that can have similar magnitudes than the 
response produced by changes in external forcing 
factors and can significantly modify the underly-
ing warming trends (Dima et al., 2007; Swanson 
et al., 2009; Semenov et al., 2010; Wu et al., 2011; 
Estrada et al., 2013a, b; Steinman et al., 2015). 

The second is harder to obtain as it implies not 
only being able to attribute climate change to its 
different natural and anthropogenic causes but also 
to successfully extract the warming trend from the 
effects of these large natural variations. Extracting 
this trend is required to investigate the effects of 
changes in anthropogenic forcing on the warming 
rates of the climate system. The apparent slowdown 
in the warming provides a good example about the 
need of distinguishing between observed temperature 
series and the underlying warming trend. Year 2015 
was the warmest on record by a considerable margin, 
does this imply that the slowdown in the warming 
has ended? Does it imply that the slowdown never 
really existed? Recent papers have analyzed unfil-
tered global temperature series and have concluded 
that the recent slowdown was either an artefact of 
the data or that it never really happened (Foster and 
Rahmstorf, 2011; Karl et al., 2015; Cahill et al., 
2015; Lewandowsky et al., 2015, 2016). A large part 
of the body of research on this topic has concluded 
that the apparent hiatus could be produced by the 
effects of low-frequency natural variability repre-
sented by physical modes such as AMO, NAO and 
PDO (Li et al., 2013; Trenberth and Fasullo, 2013; 
Steinman et al., 2015; Guan et al., 2015). These 
modes can mask the warming trend and create the 
illusion of a slowdown in the underlying warming 
trend. However, it is important to realize that these 
questions refer to the underlying warming trend 
and cannot be properly answered if the effects of 
natural variability – particularly low-frequency 
oscillations, but also shorter-term variations such 
as El Nino/Southern Oscillation (ENSO) – are not 
taken into account.

Estrada and Perron (2016) proposed a method 
based on cotrending testing and the application of a 
Principal Component Analysis (PCA) to extract the 
underlying common trend in global and hemispheric 
temperatures. They showed that some modes of natural 
variability could considerably distort the underlying 
warming trend, making difficult to investigate the 
existence of the current slowdown of the warming 
unless the underlying trend is purged from the effects 
of natural variability. Their results show that the slow-
down cannot be explained away by natural variability 
and that it is a statistically significant feature of the 
underlying warming trend. Recently, a new approach 
for testing for the attribution of changes in the rate 
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of warming was developed by Kim et al. (2017). 
It is based on new structural change tests that allow 
making inference about common breaks in a multi-
variate system with joined segmented trends. They 
concluded that the breaks in radiative forcing as well 
as in global and hemispheric temperatures are common 
and that since the 1990s there has been a significant 
decrease in the rate of growth of both temperatures and 
radiative forcing. Estrada and Perron (2016) and Kim 
et al. (2017) show that the existence of the slowdown 
in the warming can be properly tested if the effects 
of natural variability are filtered out and if adequate 
statistical tests are used for this task. Their results pro-
vide strong evidence for the existence of the current 
slowdown and for its dominant anthropogenic origin 
as was previously suggested (Estrada et al., 2013b).

In this paper, we characterize both the observed 
and underlying warming trends in hemispheric sea 
and land surface temperatures. We document im-
portant differences in the observed nonlinear trends 
in these temperature series, which would suggest 
that the northern and southern hemispheres have 
responded very differently to the observed changes 
in the radiative forcing. However, once the observed 
temperatures are purged from natural variability, it 
is shown that these series share the same underlying 
warming trend. Furthermore, the time-series analysis 
of the interhemispheric temperature asymmetry (ITA) 
suggests that the differences in warming between 
hemispheres are mainly due to natural variability, 
and not so much to differences in the response to 
increases in radiative forcing.

The rest of this paper is structured as follows. 
Section 2 describes the data and the univariate and 
multivariate methods used. The time series properties 
and the analysis of the trends in land and sea tem-
perature series are presented and discussed in Section 
3. The existence of a common secular trend between 
sea and land temperatures and radiative forcing is 
investigated in Section 4. These results are used to 
study the attribution of the trend in ITA and its fea-
tures. Section 5 is concerned with the extraction and 
description of the common trend in radiative forcing 

and hemispheric land and sea temperatures. Section 
6 concludes and summarizes the main findings.

2.	 Data and methods
The land and sea surface temperature series (Fig. 1) 
were obtained from the Climatic Research Unit 
(CRU; Morice et al., 2012) and NASA (Hansen et 
al., 2010). Note that the NASA dataset contains only 
global but not hemispheric sea surface temperature 
series. For the rest of the paper, sea, land, and sea and 
land temperatures are denoted by the letters S, L and 
SL, and the accompanying superscript identifies the 
dataset (H for CRU, and N for NASA) and region 
(G, NH and SH for global, northern hemisphere and 
southern hemisphere, respectively). The following 
indices are used to represent inter-annual variabil-
ity (Fig. 2): the Atlantic Multidecadal Oscillation 
(AMO; Enfield et al., 2001); the Southern Oscillation 
Index (SOI; Trenberth, 1984), the North Atlantic 
Oscillation (NAO; Hurrell, 1995) and the Pacific 
Multidecadal Oscillation (PDO; Zhang et al., 1997). 
The radiative forcing data (in W/m2) was obtained 
from NASA (Hansen et al., 2011). For the analyses 
presented in this paper, we use (Fig. 3): 1) the well 
mixed greenhouse gases (WMGHG; carbon dioxide 
(CO2), methane (NH4), nitrous oxide (N2O) and 
chlorofluorocarbons (CFCs)); 2) the total radiative 
forcing (TRF) which includes WMGHG plus ozone 
(O3), stratospheric water vapor (H2O), solar irradi-
ance, land use change, snow albedo, black carbon, 
reflective tropospheric aerosols and the indirect 
effect of aerosols, and; 3) the radiative forcing from 
stratospheric aerosols (STRAT).1 The data are annual 
and the samples available are: 1850-2015 for Hadley 
temperatures (with the exception of G and SH land 
temperatures which start in 1856); 1880-2105 for 
NASA temperatures; 1880-2011 for the radiative 
forcing; 1856-2015 for AMO; 1866-2014 for SOI, 
1850-2015 for NAO; 1854-2015 for PDO.

We next briefly describe the methods used in the 
empirical applications. Our descriptions are brief and 
simply present the main ideas. The reader is referred 
to Estrada and Perron (2014) for more details.

1All data can be obtained from the following links: https://crudata.uea.ac.uk/cru/data/temperature/; http://data.giss.
nasa.gov/gistemp/; http://www.esrl.noaa.gov/psd/data/timeseries/AMO/; http://www.cru.uea.ac.uk/cru/data/soi/; http://
www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/NAO/; https://www.ncdc.noaa.gov/teleconnections/pdo/; https://data.
giss.nasa.gov/modelforce/.
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Fig. 1. Global and hemispheric temperature series from CRU and NASA datasets. (a) SL from the CRU dataset (H) 
for global (SLH_G), northern hemisphere (SLH_NH) and southern hemisphere (SLH_SH); (b) SL from the NASA 
dataset (N) for global (SLN_G), northern hemisphere (SLN_NH) and southern hemisphere (SLN_SH); (c) L from 
H for global (LH_G), northern hemisphere (LH_NH) and southern hemisphere (LH_SH); (d) L from N for global 
(LN_G), northern hemisphere (LN_NH) and southern hemisphere (LN_SH); (e) L from H for global (SH_G), northern 
hemisphere (SH_NH) and southern hemisphere (SH_SH); (f) S from N for global (SN_G).
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Fig. 3. Radiative forcing series. (a) Well-Mixed 
Greenhouse Gases (WMGHG); (b) Total Radi-
ative Forcing (TRF); (c) radiative forcing from 
stratospheric aerosols (STRAT).
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Fig. 2. Principal modes of natural variability. (a) Atlantic Multidecadal Oscillation (AMO). (b) Southern Oscillation 
index (SOI); (c) North Atlantic Oscillation (NAO); (d) Pacific Decadal Oscillation (PDO).
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2.1 Perron-Yabu testing procedure for structural 
changes in the trend function 
Perron (1989) showed that the presence of structural 
changes in the trend can have considerable impli-
cations when investigating time-series properties 
by means of unit root tests. This creates a circular 
problem given that most of the tests for structural 
breaks require to correctly identify if the data gener-
ating process is stationary or integrated. Depending 
on whether the process is stationary or integrated the 
limit distribution of these tests are different and, if 
the process is misidentified, the tests will have poor 
properties. Building on the work of Perron and Yabu 
(2009a), the Perron and Yabu (PY; 2009b) test was 
designed explicitly to address the problem of testing 
for structural changes in the trend function of a uni-
variate time series without any prior knowledge as 
to whether the noise component is stationary, I(0), or 
contains an autoregressive unit root, I(1).

We present the case of a model with a one-time 
structural break in the slope of the trend function 
with an autoregressive noise component of order 
one (AR(1)); the case with general types of serial 
correlation in the noise is somewhat more involved 
(see Perron and Yabu, 2009b, for details), though the 
main ingredients are similar. Consider the following 
data generating process:

yt  =  µ0 + β0t + β1DTt + ut
ut  =  αut–1 + et	 (1)

where et ~ i.i.d. (0, σ2) and DTt = (t – TB) if t > TB and 0 
otherwise so that the trend function is joined at the 
time of the break. The autoregressive coefficient is 
such that –1 < α ≤ 1 and therefore, both integrated 
and stationary errors are allowed. The break date is 
denoted TB = [λT] for some λ  (0,1), where [·] de-
notes the largest integer that is less than or equal to 
the argument and 1(·) is the indicator function. The 
hypothesis of interest is β1 = 0.

The testing procedure is based on a Quasi Feasi-
ble Generalized Least Squares approach that uses a 
superefficient estimate of α when α = 1. The estimate 
of α is the OLS estimate obtained from an autoregres-
sion applied to detrended data and is truncated to take 
a value 1 when the estimate is in a T–δ neighborhood 
of 1. This makes the estimate “super-efficient” when 
α = 1. Theoretical arguments and simulation evidence 
show that δ = 1/2 is the appropriate choice. Treating 

the break date as unknown, the limit distribution 
is nearly the same in the I(0) and I(1) cases when 
considering the Exp functional of the Wald test 
across all permissible dates for a specified equation, 
see Andrews and Ploberger (1994). To improve the 
finite sample properties of the test, they also use a 
bias-corrected version of the OLS estimate of α as 
suggested by Roy and Fuller (2001). The testing 
procedure suggested is: (1) For any given break date, 
detrend the data by Ordinary Least Squares (OLS) to 
obtain the residuals ût; (2) estimate an AR(1) model 
for ût yielding the estimate α̂ ; (3) use α̂ to get the Roy 
and Fuller (2001) biased corrected estimate α̂ M; (4) 
apply the truncation α̂MS = α̂ M if |α̂ M – 1| > T–1/2 and 
1 otherwise; (5) apply a Generalized Least Squares 
(GLS) procedure with α̂ MS to obtain the estimates of 
the coefficients of the trend and the variance of the 
residuals and construct the standard Wald-statistic 
WFMS (λ) to test for a break at date TB = [λT]; (6) 
repeat the five steps above for all permissible break 
dates to construct the Exp functional of the Wald test 
denoted by Exp – WFS = log[T –1 ∑Λ exp (WFMS (λ) /2)] 
where Λ = {λ; ε ≤ λ ≤ 1 – ε} for some ε > 0. We set 
ε = 0.15 as is common in literature.

2.2 Perron and Kim-Perron unit root tests with a 
one-time break in the trend function 
Perron (1989) proposed an extension of the Aug-
mented Dickey-Fuller (ADF) test (Dickey and Fuller, 
1979; Said and Dickey, 1984) that allows for a one-
time break in the trend function of a univariate time 
series. Our interest centers on the “changing growth” 
model, which can be briefly described as follows. The 
null hypothesis is:

yt = µ1 + yt–1 + (µ2 – µ1) DUt + et

where DUt = 1 if t > TB, 0 otherwise; TB refers to the 
time of the break, and et is some stationary process. 
The alternative hypothesis is:

yt = µ1 + β1t + (β2 – β1) DTt + et

where DTt = t – TB; if t > TB and 0 otherwise. The 
“changing growth” model takes an “additive out-
lier” approach in which the change is assumed to 
occur rapidly and the regression strategy consists in 
first detrending the series according the following 
regression:
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yt = µ + β1t + β2DTt + y~t	 (2)

A problem with most procedures to test for a unit 
root in the presence of a one-time break that occurs at 
an unknown date (e.g., Zivot and Andrews [1992] and 
some of the tests in Perron [1997]) is that the change 
in the trend function is allowed only under the alter-
native hypothesis of a stationary noise component. As 
a consequence, it is possible that a rejection occurs 
when the noise is I(1) and there is a large change in 
the slope of the trend function. A method that avoids 
this problem is that of Kim and Perron (2009). Their 
procedure is based on a pre-test for a change in the 
trend function, namely the PY test. If this pre-test 
rejects, the limit distribution of their modified unit 
root test is then the same as if the break date was 
known (Perron and Vogelsang, 1993). This is very 
advantageous since when a break is present the test 
has much greater power. The testing procedure for 
the changing growth model consists in the following 
steps: (1) Obtain an estimate of the break date T^B 
by minimizing the sum of squared residuals using 
regression (2); then construct a window around that 
estimate defined by a lower bound Tl and an upper 
bound Th. A window of 10 observations was used. 
Note that, as shown by Kim and Perron (2009), the 
results are not sensitive to this choice. (2) Create a 
new data set {yn} by removing the data from to Tl + 
1 to Th, and shifting down the data after the window 
by S(T) = yTh – yTl; hence,

yn =
yt+Th–T1 –S(T )   if   t > Tl

yt{ if   t ≤ Tl

(3) Perform the unit root test using the break date 
Tl. This is the t-test statistic for testing that α~ = 1 in 
the following regression estimated by OLS, denoted 
by tα(λ^tr 

AO):

y~t
n = α~y~n

t  + ciΔy~t– i + e~t∑
k

i=1

n 	 (3)

where λ^tr = Tl /Tr, Tr = T – (Th – Tl) and y~t
n is the de-

trended value of yn.

2.3 Perron-Zhu methodology for constructing a con-
fidence interval for the break date
Perron and Zhu (2005) analyzed the consistency, 
rate of convergence and limiting distributions of 

parameter estimates in models where the trend ex-
hibits a slope change at some unknown date and the 
noise component can be either stationary or have an 
autoregressive unit root. Another important practi-
cal application of deriving the limiting distribution 
of the estimate of the break date is that it permits 
forming a confidence interval for the break date. 
Of the various models considered in that paper, the 
joint-segmented trend model with stationary errors 
is the most relevant to our applications (e.g., Gay et 
al., 2009; Estrada et al., 2013a,b), in which case the 
regression of interest is

yt = µ1 + β1t + βbDTt + ut

estimated by OLS. Denote the resulting estimate by 
T^B and the associated estimate of the break fraction 
by λ^ = T^B /T. They showed that the limit distribution 
of the break fraction λ^ is:

T3/2(λ^ – λ) →d N (0, 4σ2 / [λ0 (1 – λ0) (βb
0)2])

where βb
0 is thetruevalue of thechangein the slo-

peparameter and σ2 is the long-run variance of ut 
estimated using the Bartlett kernel with Andrews’ 
(1991) automatic bandwidth selection method using 
an AR(1) approximation.

2.4 Bierens’ nonparametric nonlinear co-trending 
test 
The advantage of the co-trending test proposed by 
Bierens (2000) is that the nonlinear trend does not 
have to be parameterized. The nonlinear trend station-
arity model considered can be expressed as follows:

zt = g(t) + ut

with

g (t) = β0 + β1t + f (t)

where zt is a k-variate time series, ut is a k-variate 
zero-mean stationary process and f (t) is a determin-
istic k-variate general nonlinear trend function that 
allows, in particular, structural changes. Nonlinear 
co-trending occurs when there exists a non-zero vec-
tor θ such that θ'f (t) = 0. Hence, the null hypothesis 
of this test is that the multivariate time series zt is 
nonlinear co-trending, implying that there is one or 
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more linear combinations of the time series that are 
stationary around a constant or a linear trend.

The nonparametric test for nonlinear co-trending 
is based on the generalized eigenvalues of the matri-
ces Ml and M2 defined by:

M1 = T –1 ∑T
t=1 F

^ (t/T )F^ ((t/T ))'

where F^ (x) = T –1  (zt – β^0 – β^1t) if x  [T–1,1], F^ (x) 
= 0 if x  [0, T –1] with β^0 and β^1 being the estimates 
of the vectors of intercepts and slope parameters in 
a regression of zt on a constant and a time trend; also

M2 = T–1 ∑T
t=m [m–1  (zt–j – β^0 – β^1 (t – j))][m–1 

 (zt–j – β^0 – β^1 (t – j))]'

where m = Tα with T the number of observations and 
α = 0.5 as suggested by Bierens (2000). Solving |M^

1 
– λM^

2| = 0 and denoting the r-th largest eigenvalue 
by λ̂r, the test statistic is T1–α λ̂r. The null hypothesis 
is that there are r co-trending vectors against the 
alternative of r – 1 co-trending vectors. This test has 
a non-standard distribution and the critical values 
have been tabulated by Bierens (2000). The existence 
of r co-trending vectors in r + 1 series indicates 
the presence of r linear combinations of the series 
that are stationary around a linear trend and that these 
series share a single common nonlinear determin-
istic trend. Such a result indicates a strong secular 
co-movement in the r + 1 series.

2.5 Rotated PCA to separate common trends and 
natural variability modes
PCA is commonly used to extract the main variability 
modes of a set of n interrelated variables and also 
to reduce dimensionality while retaining most of 
the variability present in the dataset (Jolliffe, 2002). 
The principal components Y1,Y2, ...,Yn are orthogonal 
linear combinations of the original dataset X of the 
form Yi = ∑n

j=1 αijxj. The first principal component is 
the linear combination Y1 = ∑n

j=1 α1jxj that maximizes 
var(α'1X) = α'1∑α1 subject to the constraint of α'1α1 
= 1,where ∑ is the variance-covariance matrix of X. 
This is attained when α1 is equal to the first eigen-
vector (i.e., the eigenvector that corresponds to the 
largest eigenvalue) of the variance-covariance matrix 
of X. The remaining principal components are those 
linear combinations of α'jX that maximize var(α'jX) 
subject to the constraint α'j αj = 1 and cov(α'jX, α'kX) 

= 0 for all j ≠ k. To simplify the interpretation of the 
principal components and to further separate the vari-
ability modes in a set of data, the axis of the principal 
components can be rotated. In our applications, we 
use the rotated PCA (varimax rotation normalized) 
to extract the principal modes of variation of tem-
perature and radiative forcing variables, in particular 
their common trend mode.

3.	 Time-series properties and trends in observed 
land and sea surface temperatures and radiative 
forcing 
Temperature series have been typically represented 
either as trend-stationary or difference-stationary pro-
cesses (Tol and de Vos, 1993; Kaufmann and Stern, 
1997; Gay-García et al., 2009). Determining which 
process better represents these series generated a long 
debate in the literature (for a review see Estrada and 
Perron, 2014). Besides the theoretical implications 
that these differences can have, describing tempera-
tures and radiative forcing as difference-stationary or 
trend-stationary processes could have important prac-
tical implications for observation-based attribution 
studies. However, the vast literature has also shown 
that the attribution of climate change to human inter-
vention with the climate system is robust to assuming 
temperature and radiative forcing variables as being 
all trend-stationary or all first difference-stationary 
(Tol and de Vos, 1998; Stern and Kaufmann, 1999; 
Estrada et al., 2013b; Estrada and Perron, 2016).

In this section, we analyze by means of state-of-the-
art econometric techniques the time-series properties 
of hemispheric land and sea temperatures and radiative 
forcing. The most common tools for investigating 
the data generating process of temperature series are 
unit root tests (Estrada and Perron, 2014). However, 
the results of these tests are highly sensitive to the 
presence of structural changes in the trend function 
(Perron, 1989): if there is a shift in the trend function 
the sum of the autoregressive coefficients is highly 
biased toward unity and therefore the unit root null 
is hardly rejected even if the series are composed of 
white noise realizations around the trend; moreover, 
if the break occurs in the slope of the trend, the null 
of a unit root cannot be rejected even asymptotically.

The rate of warming during the observed period 
has not been constant and the existence of changes in 
the slope of the trend functions of climate variables 
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is not only expected, it has also been widely reported 
(Seidel and Lanzante, 2004; Tomé and Miranda, 2004; 
Estrada et al., 2013b; Estrada and Perron, 2016). As 
such, the first step is to investigate the existence of 
breaks in the trend function by means of a testing pro-
cedure that is robust to whether temperature variables 
are difference- or trend-stationary. Then, the nature 
of the data generating process for these series can be 
investigated. The PY test provides a robust way to 
investigate the existence of structural breaks in the 
trend function without the need to know if the series 
is difference- or trend-stationary (Perron and Yabu, 
2009). This characteristic makes this test particularly 

useful as a pretest for applying the adequate type of 
unit root tests.

Table I shows that the PY test results indicate that 
a break in the slope of the trend function is present 
in all series, with the exception of the northern hemi-
sphere SH. The large differences in the break date 
estimates for the various temperature series is no-
table, ranging from 1909 to 1984. Sea and southern 
hemisphere tend to show breaks in the slope of the 
trend function at the beginning of the 20th century, 
while for northern hemisphere and land temperature 
series, the break dates occur in the second part of 
the century. In contrast, for both TRF and WMGHG 

Table I. Tests for the existence of a break in the slope of temperature 
and radiative forcing series. 

Series G NH SH

SLH 14.01***
(1976)
[1964, 1988]

21.37***
(1982)
[1973, 1991]

16.37***
(1909)
[1896, 1922]

SH 7.15***
(1909)
[1892, 1926]

1.74*
(1909)
[1886, 1932]

14.91***
(1909)
[1896, 1922]

LH 45.58***
(1978)
[1972, 1984]

56.15***
(1978)
[1972, 1984]

11.95***
(1976)
[1965, 1987]

SLN 16.12***
(1972)
[1962, 1982]]

16.72***
(1984)
[1975, 1993]

19.10***
(1925)
[1916, 1934]

SN 5.54***
(1909)
[1899, 1919]

-- --

LN 33.29***
(1975)
[1968, 1982]

23.95***
(1982)
[1974, 1990]

19.42***
(1964)
[1954, 1974]

WMGHG 20.19***
(1960)
[1959, 1961]

-- --

TRF 4.46***
(1960)
[1956, 1964]

-- --

The main entries are the values of the PY test. ***,**,*, denote 
statistical significance at the 1, 5 and 10% levels, respectively. The 
estimated break dates are given in parenthesis and their corresponding 
95% confidence intervals are shown in brackets. 
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the break dates are estimated to occur at the same time 
during the second part of the 20th century. The rates 
of warming over the observed period are markedly 
different between hemispheres, as well as between 
sea and land (Tables IIa, b, c). All sea temperatures 
show a moderate cooling trend starting in the late 19th 
century and the early part of the 20th (about –0.2 ºC 
to –0.3 ºC per century, with the exception of S from 
NASA which shows a much larger trend of –0.94 ºC 
per century). A similar cooling trend (about –0.14 ºC per 
century) is found in SL temperatures over the south-
ern hemisphere, which is dominantly composed of 
oceans. These trends are consistent with the effects 
of ocean cooling trends that have been documented 
from the preindustrial times until the beginning of 
the 20th century, when the increase in anthropogenic 
forcing started to become more important (Delworth 
and Knutson, 2000; Stott et al., 2000; McGregor et 
al., 2015; Abram et al., 2016). For all sea temperature 
series, a moderate warming started after 1909 and, in 
the case of the southern hemisphere SL, the warming 
started after 1925 (in all cases the rate of warming is 

about 0.7 ºC per century). While the post-break dif-
ferences in hemispheric warming are small regarding 
sea temperatures, the differences in the warming rate 
are very large for land temperatures. Warming trends 
over land in the northern hemisphere are about twice 
those of the southern hemisphere (about 3.2 and 1.6 ºC 
per century, respectively). These relative magnitudes 
are largely due to the differences in the distribution of 
land/ocean mass between hemispheres and to the large 
heat capacity of the oceans (Peixoto and Oort, 1992).

If taken at face value, such large differences in 
warming rates and break date estimates would suggest 
that the existence of common secular trends and breaks 
between hemispheric temperatures and radiative 
forcing would be unlikely. Furthermore, the results 
would support the fact that ITA has increased during 
the observed period and that a larger contrast between 
hemispheric temperatures could be expected in the 
future (Friedman et al., 2013; Goosse, 2016). However, 
as mentioned in the introduction, it is important to 
distinguish between observed and underlying warming 
trends. Low-frequency variability can lead to under- or 

Table IIa. Tests for a unit root allowing for a one-time break in the trend function 
applied to global temperature and radiative forcing series. 

Series k µ̂ β^ γ̂ tα̂(λ^tr 
AO)

SLH 0 –0.407
(–19.41)

0.003
(10.55)

0.014
(11.13)

–5.90***

SH 2 –0.237
(–8.84)

–0.002
(–3.46)

0.009
(10.58)

–3.74*

LH 0 –0.569
(–20.45)

0.005
(12.53)

0.022
(12.27)

–8.21***

SLN 0 –0.315
(–14.19)

0.004
(9.27)

0.014
(11.55)

–5.35***

SN 0 –0.038
(–1.07)

–0.009
(–6.14)

0.017
(9.92)

–4.57***

LN 0 –0.497
(–21.31)

0.006
(15.57)

0.016
(11.85)

–7.30***

WMGHG 7 –0.287
(–23.68)

0.011
(64.05)

0.035
(87.22)

–3.94**

TRF 1 –0.240
(–10.56)

0.006
(20.89)

0.022
(29.09)

–4.25***

Bold figures denote statistically significance at the 5% level. T-statistic values 
are given in parenthesis. tα̂(λ^tr 

AO) is the Kim-Perron test statistic. ***,**,*, 
denote statistical significance at the 1, 5 and 10% levels, respectively. 
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overestimation of the warming rates and can severely 
affect the break date estimates (Swanson et al., 2009; 
Wu et al., 2011; Estrada et al., 2013b; Guan et al., 
2015; Estrada and Perron, 2016). To address these 
questions, appropriate statistical tests need to be used 
to investigate the time series properties of these series 
and the existence of a common secular trend.

The results of applying the Kim Perron test 
provide strong evidence in favor of trend-stationary 
processes with a break in the slope of their trend 

functions for all temperature and radiative forcing 
series (Tables IIa, b, c). The only exception is the 
northern hemisphere SH, for which the null hypoth-
esis of a unit root cannot be rejected at conventional 
levels. These results are broadly similar with those 
previously reported for other temperature series (Gay-
García et al., 2009; Estrada et al., 2013b; Estrada and 
Perron, 2016). Moreover, they provide additional 
evidence suggesting that temperature series are better 
represented as trend-stationary processes, whether 

Table IIb. Tests for a unit root allowing for a one-time break in the trend 
function applied to northern hemisphere temperature series. 

Series k µ̂ β^ γ̂ tα̂(λ^tr 
AO)

SLH 0 –0.365
(–14.39)

0.003
(8.92)

0.022
(11.84)

–6.67***

SH 2 –0.129
(–3.70)

–0.003
(–3.89)

0.010
(8.81)

–3.29

LH 0 –0.524
(–15.11)

0.004
(9.04)

0.028
(12.45)

–9.79***

SLN 0 –0.345
(–12.74)

0.005
(10.73)

0.023
(10.82)

–5.69***

LN 0 –0.486
(–15.87)

0.007
(13.33)

0.025
(11.31)

–6.41***

Bold figures denote statistically significance at the 5% level. T-statistic values 
are given in parenthesis. tα̂(λ^tr 

AO) is the Kim-Perron test statistic. ***,**,*, 
denote statistical significance at the 1, 5 and 10% levels, respectively. 

Table IIc. Tests for a unit root allowing for a one-time break in the trend 
function applied to southern hemisphere temperature series. 

Series k µ̂ β^ γ̂ tα̂(λ^tr 
AO)

SLH 0 –0.326
(–12.75)

–0.001
(–2.45)

0.009
(10.72)

–6.93***

SH 0 –0.303
(–12.27)

–0.002
(–3.52)

0.009
(11.74)

–6.93***

LH 0 –0.661
(–24.80)

0.005
(14.92)

0.011
(6.651)

–9.51***

SLN 0 –0.136
(–4.67)

–0.004
(–5.11)

0.014
(12.69)

–4.76***

LN 0 –0.501
(–19.88)

0.005
(11.71)

0.011
(8.99)

–8.12***

Bold figures denote statistically significance at the 5% level. T-statistic values 
are given in parenthesis. tα̂(λ^tr 

AO) is the Kim-Perron test statistic. ***,**,*, 
denote statistical significance at the 1, 5 and 10% levels, respectively. 
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the measurements correspond to land or ocean and 
irrespective of their spatial scale (Gay et al., 2007). 
Given that both temperature and radiative forcing se-
ries share the same type of time-series properties, the 
next section focusses on investigating the existence of 
a common secular trend by means of the co-trending 
test described in the methods section (Bierens, 2000).

4.	 Testing for a common secular trend between 
temperatures and radiative forcing series and in-
vestigating the trend in ITA
The results in the previous section indicate strong 
differences in the observed characteristics of the trend 
functions of sea and land hemispheric temperatures, 
and also between radiative forcing and temperature 
variables. Taken at face value, the previous analysis 
would suggest that hemispheric sea and land tempera-
ture series follow different trends and that these are 
hardly related to the trends shown by radiative forcing 
series. Testing for cotrending provides a way to inves-
tigate the existence of an underlying common trend in 
temperature series and radiative forcing that might be 
masked by the natural variability in temperatures. Fur-
thermore, these tests can help understanding the causes 
behind the underlying warming trend and to evaluate 
the role of human activities in warming the climate sys-
tem (Estrada et al., 2013b; Estrada and Perron, 2014).

In this section, the sets of variables used to apply 
the cotrending test are selected to address the fol-
lowing questions: 1) is there a common secular trend 
between all temperature and TRF and WMGHG?; 
(2) is this common trend imparted by WMGHG, 
which has mainly an anthropogenic origin?; (3) do 
global and hemispheric temperatures share the 
same trend across the different datasets? The first 
two questions are directly related to attributing the 
underlying warming trend to human activities and, 
therefore, cotrending is tested within the different 
temperature datasets (CRU and NASA). For the 
third one, the cotrending test is carried out across the 
different temperature datasets in order to address if 
the differences in how CRU and NASA process and 
adjust data affect the underlying trends or if these 
differences mainly affect the noise component of 
these series. As discussed below, these results are 
useful to investigate the systematic movement shown 
by ITA and its drivers.

Table III shows that for both datasets there is a 
common secular trend between WMGHG, TRF and 
all S, SL and L temperature series, at the global and 
hemispheric scales. These results provide strong evi-
dence about the anthropogenic origin of the warming 
trend. Although statistical methods alone can hardly 
prove causality, the way the tests are structured and 

Table III. Cotrending tests within CRU and NASA datasets for L, SL and L, TRF and WMGHG.

Series Test statistic Series Test statistic

LH,G, LH,NH, LH,SH, TRF, 
WMGHG

(r=1) 0.04 
(r=2) 0.06 
(r=3) 0.07 
(r=4) 0.14 
(r=5) 0.39**

LN,G, LN,NH, LN,SH, TRF, 
WMGHG

(r=1) 0.03
(r=2) 0.04
(r=3) 0.07
(r=4) 0.14
(r=5) 0.36**

SLH,G, SLH,NH, SLH,SH, 
TRF, WMGHG

(r=1) 0.03
(r=2) 0.06
(r=3) 0.09
(r=4) 0.18
(r=5) 0.44**

SLN,G, SLN,NH, SLN,SH, 
TRF, WMGHG

(r=1) 0.04
(r=2) 0.06
(r=3) 0.07
(r=4) 0.14
(r=5) 0.38**

SH,G, SH,NH, SH,SH, TRF, 
WMGHG

(r=1) 0.04
(r=2) 0.07
(r=3) 0.09
(r=4) 0.14
(r=5) 0.37**

**,* denotes statistical significance at the 10 and 5% levels, respectively. r is the number of 
cotrending vectors. Note that SN is only available at the global scale. 
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by invoking basic climate physics it is possible to 
establish a causal link. By construction, WMGHG is 
contained in TRF and therefore if these two variables 
cotrend, it must be that WMGHG is imparting TRF 
its trend; as expected form climate physics, tempera-
tures follow the trend imparted by TRF. As such, the 
common trend in all series has its origins in WMGHG 
(Estrada et al., 2013b), all other forcing factors mainly 
modulate this trend. Furthermore, these results con-
firm that the differences in the break dates reported in 
the previous section are due to temporary excursions 
from the common trend that are produced by natural 
variability oscillations. Section 6 provides further 
evidence on how natural variability modes alter the 
underlying common trend and its features.

The results in Table IV complement those in 
Table III and strongly suggest that the differences 
across CRU and NASA datasets for all temperature 
series and scales do not affect the underlying trend: 
in all cases, deviations from the common trend can 
be considered stationary. However, as shown by the 
results in Table I, these deviations are large enough 
to severely distort the observed trend in temperatures. 
Note that the existence of a common trend does not 
preclude that significant differences in the warming 
rates between hemispheres could be present.

The transient climate response (TCR) relates the 
time-dependent change in global mean surface tem-
perature to changes in the time-dependent change 
in external forcing (Gregory and Forster, 2008; 
Schwartz, 2012; Estrada et al., 2013b). Estimates of 
the TCR can be obtained by regressing temperature 
series on TRF as follows:

Tt = c + γTRFt + εt	 (4)

Where c is a constant, γ is a fixed parameter 
that represents TCR and, εt encompasses low- to 
high-frequency unforced climate variability, which 
as indicated by the results in Tables III and IV can 
be assumed as stationary variations.

Table V presents the estimates of TCR and of 
the response of hemispheric sea/land temperatures 
to the observed changes in TRF. The TCR estimates 
obtained for global SL temperatures are broadly 
similar for both CRU and NASA datasets: a 1 W/m2 
increase in TRF would produce an increase in global 
temperatures of about 0.45 ºC. The difference in the 
response of global SL temperatures to changes in 
TRF between the two datasets is quite small (about 
11%). The differences are also below 11% for all 
other global and hemispheric temperature series, with 

Table IV. Cotrending tests across CRU and NASA datasets for L, SL and L, TRF and WMGHG.

Series Test statistic Series Test statistic

LH,G, LN,G, TRF,
WMGHG

(r=1) 0.04
(r=2) 0.07
(r=3) 0.14
(r=4) 0.36**

SLH,G, SLN,G, TRF, 
WMGHG

(r=1) 0.05
(r=2) 0.08
(r=3) 0.11
(r=4) 0.36**

LH,NH, LN,NH, TRF, 
WMGHG

(r=1) 0.05
(r=2) 0.07
(r=3) 0.14
(r=4) 0.37**

SLH,NH, SLN,NH, TRF, 
WMGHG

(r=1) 0.04
(r=2) 0.08
(r=3) 0.12
(r=4) 0.36**

LH,SH, LN,SH, TRF, 
WMGHG

(r=1) 0.03
(r=2) 0.07
(r=3) 0.13
(r=4) 0.36**

SLH,SH, SLN,SH, TRF, 
WMGHG

(r=1) 0.06
(r=2) 0.09
(r=3) 0.13
(r=4) 0.38**

SH,G, SN,G, TRF,
WMGHG

(r=1) 0.05
(r=2) 0.09
(r=3) 0.10
(r=4) 0.37**

**,* denotes statistical significance at the 10 and 5% levels, respectively. r is the number of 
cotrending vectors. Note that SN is only available at the global scale. 
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the exception of land temperature for the southern 
hemisphere. In that case, the response to changes 
in TRF for NASA is about 22% larger than that for 
CRU. This is probably related to how the different 
groups process and adjust temperature data (e.g., 
interpolations where data is missing).

As expected, given the high heat capacity of the 
oceans, the warming induced by changes in radia-
tive forcing is much higher over land than over sea. 
In particular, the largest response occurs over the 
northern hemisphere. This temperature difference 
between hemispheres is a characteristic of the Earth’s 
climate and has been suggested to be the result of a 
northward cross-equatorial ocean heat transport and 
the difference in the fraction of continental mass 
(Kang et al., 2015; Goosse, 2016). The temperature 

contrast between hemispheres has emerged in the 
literature as an indicator of climate change (Friedman 
et al., 2013). Changes in ITA linked to increases in 
radiative forcing are of particular interest given its 
potential effect in displacing the intertropical con-
vergence zone and with it the current precipitation 
patterns over large parts of the world could change 
(Broecker and Putnam, 2013; Seo et al., 2016). The 
observed ITA has been characterized as showing no 
trend during most of the 20th century but having an 
increasing trend of about 0.17 ºC per decade since 
1980. Models simulations indicate that this tem-
perature contrast will increase considerably in the 
future (Friedman et al., 2013). For instance, under the 
RCP8.5 scenario and for the Coupled Model Inter-
comparison Project (CMIP5) ensemble, the projected 
increases in ITA for the end of this century are in the 
range of 0.01 to 2.96 ºC, with an ensemble mean val-
ue of 1.63 ºC. The ITA ensemble mean for the RCP8.5 
scenario follows a linear trend of about 0.17 ºC 
per decade, which is similar to that reported for the 
last part of the observed period (Friedman et al., 
2013). However, recent studies have argued that cur-
rent climate models exaggerate the synchronicity of 
hemispheric temperature fluctuations due to an un-
derestimation of internal variability and feedbacks, 
particularly in the southern hemisphere (Neukom et 
al., 2014). This lack of synchronicity in hemispheric 
natural variability could explain a large part of the 
observed changes in ITA. The results presented in 
Tables III to V allow to empirically estimate the 
change in ITA that can be attributed to differences 
in the response to external forcing from the northern 
and southern hemispheres. The values of γ from (4) 
for SLNH and SLSH show that the difference in the 
transient response between hemispheres is about 
0.054 ºC per W/m2, for both CRU and NASA. That is, 
if an increase in radiative forcing of 8.5 W/m2 occurs 
by the end of this century (as is supposed under the 
RCP8.5 scenario), the ITA would rise only by about 
0.46 ºC. This estimate is within the range of 0.01 to 
2.96 ºC mentioned above, but is substantially lower 
than the average of the CMIP5 ensemble (1.63 ºC).2

Table V. Response of temperature series to changes in TRF.

Series CRU NASA

SLG 0.43
(21.6)

0.47
(26.1)

SLNH 0.45
(17.8)

0.50
(19.3)

SLSH 0.40
(22.0)

0.45
(24.9)

LG 0.60
(20.9)

0.64
(28.9)

LNH 0.65
(18.8)

0.67
(21.7)

LSH 0.50
(20.0)

0.60
(30.5)

SG 0.36
(17.8)

0.38
(21.3)

SNH 0.32
(13.4)

--

SSH 0.39
(21.0)

--

The reported values correspond to γ in (4). t-statistic values 
are given in parenthesis.

2As discussed in the literature, the emission of aerosols in the northern hemisphere has decreased the temperature 
contrast between hemispheres (Ridley et al., 2015) and, therefore, changes in future aerosol emissions can have an 
effect on this empirical estimate.
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Figure 4a shows ITA computed as the difference be-
tween SL from northern and southern hemispheres. As 
previously reported in the literature, visual inspection 
of ITA suggests the existence of a sudden drop in the 
late 1960s and a positive trend afterwards (Friedman 
et al., 2013). We formally document the existence of a 
break in both the level and the slope of the trend func-
tion by applying the PY test to ITA. The test results 
show compelling evidence for such a break occurring 
in 1968 (PY test values of 28.04 and 17.15 for CRU 
and NASA, respectively). This feature persists even 
after the underlying warming trend is removed (i.e., after 
ITA is detrended using TRF; Fig. 4b).3 In this case, 
the PY test values are 17.67 and 14.22 for CRU and 
NASA, respectively. This strongly suggests that the 
sudden drop and positive trend shown since 1968 are 
the product of combining the low-frequency natural 
variability contained in NH and SH, which can have 
different amplitudes, periods and/or phases. As shown 
in the literature (Neukom et al., 2014; Abram et al., 
2016), SH and NH are characterized by differences 
in timing and phase of cooling and warming periods. 
This fact is clearly illustrated by the results in Table I. 
The lack of synchronicity in hemispheric natural vari-
ability could have generated the observed break in the 
trend function of ITA, and cause a temporary trend in 
the interhemispheric temperature contrast during the 
last decades.

To further investigate if the break in ITA can be 
explained by natural variability, we applied a two-
step method: 1) autoregressive distributed lag models 
(ARDL) are estimated using TRF,AMO,NAO,SOI, 
and PDO as explanatory variables, which are some 
of the main modes of climate variability (Enfield et 
al., 2001; Trenberth, 1984; Hurrell, 1995; Zhang et 
al., 1997); 2) the PY test is applied to the residuals 
of these ARDL regressions to test for the existence 
of a break in the trend function. For robustness, in 
this second step, the three possible types of breaks 
considered by Perron and Yabu (2009b) are tested for: 
in the level, in the slope, and in the level and slope of 
the trend function. The general specification of the 
ARDL models used is:

ρiITAt–i +∑
p

i=1
βj+1TRFt–j∑

q1

j=0

φk+1AMOt–k∑
q2

k=0

ITAt = c +

+ ωl+1NAOt–l∑
q3

l=0
+

θm+1SOIt–m∑
q4

m=0
+ πn+1PDOt–n + εt∑

q5

n=0
+

	 (5)

The number of lags for the ARDL (p, q1, q2, q3, 
q4, q5) model above is selected using the Akaike 
Information Criterion. The maximum number of 
lags in all cases was restricted to four. For the 

3Broadly similar results are obtained if WMGHG is used to detrend ITA instead of TRF.
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Fig. 4. Interhemispheric Temperature Asymmetry. Panel a): the blue line shows ITA from the CRU dataset (ITA_H), 
while the red line shows ITA from the NASA dataset (ITA_N); Panel b): ITA detrended using TRF, for the CRU 
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CRU and NASA datasets, the selected models were 
ARDL (3, 0, 1, 0, 0, 0) and ARDL (4, 0, 3, 0, 0, 
0), respectively. These models explain about 53% 
(CRU) and 67% (NASA) of the variance of ITA, and 
standard misspecification tests (not shown) indicate 
a well-specified regression.

More importantly, Table VI shows that no break 
in the trend function (slope, level or both) is present 
after the effects of natural variability have been 
taken into account. These results suggest that, while 
anthropogenic forcing has contributed to the trend 
in ITA, the rapid increase shown by this variable 
since the late 20th century can be explained by 
natural variability.

5.	 Extracting the common warming trend and 
investigating its features
The results in Sections 3 and 4 suggest that natu-
ral climate variability can significantly distort the 
underlying common warming trend in a way that 
the observed temperature trends seem to bear little 
resemblance to each other and to those of the radi-
ative forcing series. Here we follow the approach 
proposed by Estrada and Perron (2016) to extract 
and characterize the common trend in temperature 
and radiative forcing series via a PCA, documented 
in the previous section.

The PCA analysis to extract the common trend is 
carried out using sets of variables that include those 
used for the cotrending test in the previous section 
(G, NH, SH, WMGHG and TRF), the main natural 
variability modes (AMO, SOI, NAO and PDO), and 
STRAT. The analysis is done for each temperature 
dataset (CRU, NASA) and for SL, L and S. The 
PCA analysis presented here extracts and rotates the 
ten possible principal components for each set of 

variables. Note that the application of the PCA pro-
posed in Estrada and Perron (2016) is not to reduce 
dimensionality but to extract the common trend from 
the other modes of variability. Tables VIIa to VIIc 
show the factor loadings of the rotated PCA for the 
CRU dataset and Tables VIId and VIIe show those 
for NASA’s. In all cases, the main mode of variabil-
ity is the common underlying trend represented by 
PC1, which is highly correlated with the radiative 
forcing and temperature series and has almost zero 
correlation with all the other variables. PC1 explains 
about 48% of the variability of the different sets of 
variables (Fig. 5). According to the ADF test (Dickey 
and Fuller, 1979), all other principal components can 
be considered stationary processes around a constant 
(results not shown here).

The next five principal components (PC2-PC6) 
are highly correlated (≥ 0.95) uniquely to one of the 
physical variability modes included in the analysis 
and to STRAT. The second mode of variability (PC2) 
corresponds to PDO for all temperatures and data-
sets. STRAT is represented by PC3 for LH and SLN, 
PC5 for SLH and SH, and PC4 for LN, while NAO is 
represented by PC4 in all cases with the exception 
of LN, in which case this mode corresponds to PC3. 
AMO corresponds to PC3 in SLH and SH and in all 
other cases this mode is represented by PC5. SOI cor-
responds to PC6 in all cases. PC7 (PC8 in the case of 
LH) and PC8 (PC7 in the case of LH) represent modes 
of variability that difficult to identify, but which do 
not correspond to the natural modes included in the 
analysis. Although PC7 and PC8 probably reflect 
part of the differences in how the CRU and NASA 
adjust and process data, the strong similarity of these 
modes across the different datasets suggests that PC7 
and PC8 may also represent true natural variability 

Table VI. Tests for the existence of a break in the level and slope, the 
slope and, the level of the ARDL regression residuals.

Dependent variable Level and slope Slope Level

ITAH 2.04
(1968)

0.74
(1898)

0.87
(1936)

ITAN 1.37
(1931)

0.19
(1985)

0.69
(1940)

The main entries are the values of the Perron-Yabu test. ***,**,*, 
denote statistical significance at the 1, 5 and 10% levels, respectively. 
The estimated break dates are given in parenthesis. 
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Table VIIa. Factor loadings of the rotated principal component analysis of CRU’s sea–land G, NH, SH, and 
WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT.

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

H4SLG 0.94 0.01 0.27 0.07 0.08 0.09 0.10 0.11 0.00 0.00
H4SLNH 0.90 0.02 0.34 0.06 0.12 0.04 –0.04 0.21 0.00 0.00
H4SLSH 0.94 0.00 0.16 0.08 0.03 0.14 0.25 –0.02 0.00 0.00
AMO 0.19 0.01 0.96 0.15 0.11 0.01 0.01 0.01 0.00 0.00
SOI –0.09 –0.26 –0.01 0.08 0.09 –0.95 –0.01 0.00 0.00 0.00
NAO –0.15 –0.03 –0.15 –0.97 –0.10 0.07 0.00 0.00 0.00 0.00
PDO 0.00 0.97 0.01 0.03 –0.07 0.24 0.00 0.00 0.00 0.00
TRF 0.98 0.00 –0.06 0.07 –0.04 –0.01 –0.11 –0.12 0.04 0.00
WMGHG 0.98 –0.01 –0.07 0.10 –0.03 –0.02 –0.13 –0.08 –0.05 0.00
STRAT 0.04 –0.06 0.11 0.09 0.98 –0.08 0.00 0.01 0.00 0.00

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in absolute value 
are shown in bold.

Table VIIb. Factor loadings of the rotated principal component analysis of CRU’s land G, NH, SH, and WMGHG, 
TRF, AMO, SOI, NAO, PDO and STRAT.

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

H4LG 0.95 –0.01 0.12 0.05 0.22 0.04 0.17 0.04 0.01 0.00
H4LNH 0.93 0.01 0.14 0.03 0.23 0.00 0.23 –0.06 0.01 0.00
H4LSH 0.92 –0.08 0.07 0.10 0.16 0.13 0.00 0.29 0.00 0.00
AMO 0.17 –0.01 0.11 0.15 0.97 0.02 0.01 0.01 0.00 0.00
SOI –0.07 0.25 0.09 0.07 –0.02 –0.96 0.00 –0.01 0.00 0.00
NAO –0.15 0.02 –0.09 –0.97 –0.15 0.07 0.00 0.00 0.00 0.00
PDO 0.00 –0.97 –0.06 0.03 0.01 0.25 0.00 0.01 0.00 0.00
TRF 0.97 0.02 –0.07 0.08 –0.05 0.01 –0.18 –0.09 0.04 0.00
WMGHG 0.98 0.03 –0.05 0.11 –0.05 0.00 –0.14 –0.08 –0.05 0.00
STRAT 0.06 0.06 0.98 0.09 0.11 –0.09 0.01 0.00 0.00 0.00

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in absolute value 
are shown in bold.

Table VIIc. Factor loadings of the rotated principal component analysis of CRU’s sea G, NH, SH, and WMGHG, 
TRF, AMO, SOI, NAO, PDO and STRAT.

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

H4SG 0.91 0.01 0.32 0.07 0.06 0.11 0.14 0.15 0.00 –0.03
H4SNH 0.83 0.01 0.47 0.07 0.08 0.08 0.02 0.27 0.00 0.00
H4SSH 0.94 –0.02 0.16 0.06 0.04 0.10 0.26 0.01 0.00 0.00
AMO 0.17 0.01 0.97 0.15 0.11 0.01 0.01 0.00 0.00 0.00
SOI –0.09 –0.26 –0.02 0.08 0.09 –0.95 –0.01 –0.01 0.00 0.00
NAO –0.15 –0.03 –0.15 –0.97 –0.10 0.07 0.00 0.00 0.00 0.00
PDO –0.01 0.97 0.01 0.03 –0.07 0.24 0.00 0.00 0.00 0.00
TRF 0.98 0.01 –0.05 0.07 –0.03 –0.01 –0.14 –0.11 –0.05 0.01
WMGHG 0.97 0.00 –0.05 0.10 –0.02 –0.02 –0.17 –0.08 0.04 0.01
STRAT 0.03 –0.06 0.11 0.09 0.98 –0.08 0.00 0.01 0.00 0.00

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in absolute value 
are shown in bold.
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Table VIId. Factor loadings of the rotated principal component analysis of NASA’s sea-land G, NH, SH, and 
WMGHG, TRF, AMO, SOI, NAO, PDO and STRAT.

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

NSLG 0.96 –0.02 0.06 0.08 0.22 0.08 –0.09 0.11 0.00 –0.01
NSLNH 0.90 –0.04 0.13 0.06 0.33 0.05 0.07 0.21 0.00 0.00
NSLSH 0.95 0.01 –0.04 0.09 0.07 0.12 –0.28 –0.03 0.00 0.00
AMO 0.16 –0.01 0.11 0.15 0.97 0.01 –0.01 0.01 0.00 0.00
SOI –0.09 0.26 0.09 0.08 –0.02 –0.96 0.01 0.00 0.00 0.00
NAO –0.16 0.03 –0.10 –0.97 –0.15 0.07 0.00 0.00 0.00 0.00
PDO 0.00 –0.97 –0.07 0.03 0.01 0.24 0.00 0.00 0.00 0.00
TRF 0.99 0.01 –0.03 0.06 –0.04 –0.01 0.10 –0.11 0.04 0.01
WMGHG 0.98 0.01 –0.02 0.09 –0.04 –0.02 0.12 –0.08 –0.05 0.00
STRAT 0.02 0.06 0.98 0.09 0.11 –0.08 0.00 0.01 0.00 0.00

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in absolute value 
are shown in bold.

Table VIIe. Factor loadings of the rotated principal component analysis of NASA’s land G, NH, SH, and WMGHG, 
TRF, AMO, SOI, NAO, PDO and STRAT.

Series PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

NLG 0.97 0.03 0.07 0.10 0.16 0.05 0.07 –0.09 0.00 –0.01
NLNH 0.93 0.05 0.06 0.14 0.25 0.02 –0.04 –0.21 0.00 0.00
NLSH 0.97 0.01 0.08 0.05 0.05 0.07 0.21 0.05 0.00 0.00
AMO 0.14 0.01 0.15 0.11 0.97 0.02 0.00 –0.01 0.00 0.00
SOI –0.07 –0.25 0.07 0.09 –0.02 –0.96 0.00 0.00 0.00 0.00
NAO –0.15 –0.02 –0.97 –0.10 –0.15 0.07 0.00 0.00 0.00 0.00
PDO 0.01 0.97 0.03 –0.06 0.01 0.25 0.00 0.00 0.00 0.00
TRF 0.98 –0.02 0.07 –0.06 –0.02 0.01 –0.11 0.11 0.04 0.00
WMGHG 0.98 –0.03 0.09 –0.05 –0.02 0.00 –0.10 0.07 –0.05 0.00
STRAT 0.06 –0.06 0.09 0.98 0.11 –0.09 0.00 –0.01 0.00 0.00

Extraction: principal components. Rotation: varimax normalized. Correlations higher than 0.70 in absolute value 
are shown in bold.

modes. PC9 closely corresponds to solar variability 
and PC10 mainly represents unstructured noise.

The features of the common warming trend rep-
resented by PC1 are relevant to better understand the 
observed response of the climate system to increases 
in radiative forcing. The existence of a current slow-
down in the warming — and its causes — are of 
particular interest to the scientific and policy-making 
communities and the general public. For this purpose, 
we apply the Perron-Yabu test to investigate the ex-
istence of structural breaks in the slope of the trend 
function of the first principal components that were 
extracted. The estimated break dates are compared 
to those found in the radiative forcing variables as a 
simple way to establish the existence of co-breaking.

Consistent with what has been reported earlier 
(Estrada et al., 2013b; Estrada and Perron, 2016; Kim 

et al., 2017), TRF and WMGHG are characterized by 
two highly significant breaks in the slope of their trend 
function. These breaks occurred at the same time in 
1960 and in the early 1990s and, by construction, the 
breaks in TRF are mainly imparted by WMGHG. As 
can be seen from Table VIII, the first principal com-
ponents for the various series are also characterized 
by two breaks in the slope of their trend function. In 
all cases, the first break is significant at the 1% level 
and most of the break dates are concentrated around 
the mid-1960s, similar to the breaks found in the ra-
diative forcing series. The 95% confidence intervals 
of the break dates confirm that the dates for the first 
break in the PC1 series are not statistically different 
between them nor are they different from that of TRF. 
Similarly, the dates for the first break in the PC1 series 
are not statistically different to that of WMGHG, with 
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Fig. 5. Rotated principal components of global and hemispheric sea, land, sea and land temperatures, WMGHG, TRF, 
AMO, SOI, NAO and PDO.
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the exception of PC1(LH), the PC1 that corresponds 
to the set involving land temperatures from CRU. 
Even in this case, the difference in the break dates is 
just a few years. This common break between tem-
perature series and radiative forcing occurring in the 
60s marks the onset of global warming dominated by 
anthropogenic factors (Estrada et al., 2013b; Estrada 
and Perron, 2016; Kim et al., 2017).

The PC1 and radiative forcing series are also 
characterized by a second break occurring during the 
1990s. In all cases, the break in the slope of the trend 
function in the PC1 series is significant at the 5% 
level, with the exception of PC1(LH) and PC1(SLH) 
for which the breaks are significant at the 10% level. 
The estimated break dates for all PC1 series are not 
statistically different from those of WMGHG and TRF. 

The exceptions are PC1(SLH) and TRF, for which the 
95% confidence intervals do not overlap. The presence 
of this common break occurring in the 1990s provides 
strong evidence for the existence of a slowdown in the 
warming and allows, at least partially, to attribute it to 
the anthropogenic interventions with the climate system. 
According to Estrada et al. (2013), the current slowdown 
in the warming is mainly imparted by the decrease in 
the rate of growth in the radiative forcing of CFCs and 
methane that resulted from the adoption of the Montreal 
Protocol and from changes in agricultural production in 
Asia, as well as by the increase in atmospheric aerosols 
emissions (Velders et al., 2007; Montzka et al., 2011; 
Kai et al., 2011; Hansen et al., 2011).

A two-compartment climate model (Schwartz 
2012) is useful to understand the physical model 

Table VIII. Tests for the existence two breaks in the slope of the common trend 
between temperature and radiative forcing series.

Series Test statistic Series Test statistic

PC1(LH) 99.95***
(1968)
[1964, 1972]
1.14*
(1990)
[1980, 2000]

PC1(SLN) 51.48***
(1962)
[1956, 1968]
4.2862***
(1990)
[1984, 1996]

PC1(SLH) 43.16***
(1966)
[1960, 1972]
1.17*
(2002)
[1996, 2008]

TRF 4.46***
(1960)
[1956, 1964]
18.21***
(1991)
[1989, 1993]

PC1(SH) 16.70***
(1964)
[1954, 1974]
1.85**
(1998)
[1992, 2004]

WMGHG 20.19***
(1960)
[1959, 1961]
3.42***
(1994)
[1990, 1998]

PC1(LN) 109.60***
(1965)
[1961, 1969]
1.84**
(1988)
[1980, 1996]

The main entries are the values of the PY test. ***,**,*, denote statistical 
significance at the 1, 5 and 10% levels, respectively. The estimated break dates 
are given in parentheses and their corresponding 95% confidence intervals are 
shown in brackets. 
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behind the empirical results offered in this paper. The 
upper compartment is composed of the atmosphere 
and the upper ocean and it is characterized by a small 
heat capacity and short time constant to reach its 
equilibrium state. The lower compartment represents 
the deep ocean and has a high heat capacity and a 
long time constant to reach its steady state. These 
compartments are thermally coupled. When a pos-
itive and sustained external forcing is imposed, the 
upper compartment temperature increases, leading 
to changes in the absorbed/emitted radiation at the 
top of the atmosphere and to a heat flow to the lower 
compartment. The analysis and results presented 
in this paper pertain to the response of the upper 
compartment of the climate system to changes in 
radiative forcing. The TCR, represented by γ in (4), is 
characterized by the short time constant of the upper 
compartment. As mentioned in the previous section, 
TCR relates time dependent changes in temperatures 
to time dependent changes in radiative forcings giv-
en by T(t) = StrF(t),where Str is the TCR. Over the 
observed period, the response of the climate system 
to the forcing has been determined by the time to 
reach the steady state (usually referred to as the time 
constant) of the upper compartment and the TRC. 
This provides a physical explanation of why global 
and hemispheric surface temperatures share the same 
nonlinear trend and the same features of the radiative 
forcing, and of why surface temperatures rapidly 
adjust to changes in the radiative forcing (Schwartz 
2012; Estrada et al., 2013b).

6.	 Conclusions
This paper highlights the need to distinguish between 
the observed temperature trends and the underlying 
warming trends when investigating the response of the 
climate system to changes in external forcing. Due to 
the effects of natural variability, which distorts the un-
derlying trend, investigating the trends and features of 
observed temperatures as a substitute for investigating 
those of the underlying warming trend can be severely 
misleading. Conclusions based on characterizing the 
trend in observed temperatures, instead of that of the 
underlying trend, can hardly be useful to shed light 
on issues such as the existence of a slowdown in the 
warming or how the ITA has changed.

Although several factors have an effect over the 
fitted trends in global and hemispheric temperatures, 
our analysis strongly suggests that their underlying 

trend and its features are imparted by the radiative 
forcing. Furthermore, the common trend between 
radiative forcing and temperature series, and its 
features, can be substantially attributed to human ac-
tivities. This conclusion is strongly supported by the 
cotrending analysis and the characterization of 
the extracted common trend. One of the most debated 
features of the warming trend is the existence and 
causes of a slowdown in the warming since the 1990s 
(Tollefson, 2014, 2016). Here, we provide additional 
empirical evidence showing that the slowdown is a 
common feature present in the radiative forcing series 
as well as sea, land, and sea-land temperatures, both 
at the hemispheric and global scales. As suggested by 
Estrada et al. (2013a), the slowdown in the warming 
has, at least partly, a human origin. According to our 
results, natural variability has made it more difficult 
to detect the current slowdown. It is important to 
note that, even if other factors may have a role in 
explaining the slowdown in observed temperatures, 
the results we report here are directly related to the 
response of temperatures to changes in external 
forcing and therefore cannot be dismissed as natural 
variability phenomena.

ITA has been proposed as an emerging indicator of 
climate change for which a rapid response to changes 
in external forcing has been detected in the late 1960s 
(Friedman et al., 2013). Changes in ITA related to 
external forcings are of particular interest given their 
potential effect in displacing the intertropical con-
vergence zone, with the implication that the current 
precipitation patterns over large parts of the world 
could change (Broecker and Putnam, 2013; Seo et al., 
2016). However, our analysis shows that, although 
there is a trend in ITA that can be traced to changes 
in anthropogenic forcings, the structural break in 
the level and the slope registered in the late 1960s is 
very likely the product of combining low-frequency 
variability of different magnitudes, phases and pe-
riods that are contained in the temperatures of the 
northern and southern hemispheres. The difference in 
the transient response between hemispheres is about 
0.054 ºC per W/m2. Although this estimate is within 
the CMIP5 range, it would produce substantially 
lower increases in ITA than the average of the CMIP5 
ensemble. However, it is important to consider that 
regional forcing factors (e.g., tropospheric aerosols) 
can have a large influence over ITA and changes 
in the emissions of these factors can lead to larger 
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temperature contrasts between hemispheres. Given 
the large effects of natural variability over ITA, our 
results suggest that this variable may not be a good 
indicator of climate change.

The results in this paper provide additional 
evidence supporting the fact that temperatures can 
be better represented as trend stationary process-
es with structural breaks in their trend function. 
The results obtained using new techniques and 
approaches that are robust to the type of data gen-
erating process, such as those presented here, and 
the broad agreement shown by most attribution 
studies, make a very strong case supporting the 
attribution of climate change to human activities. 
The present study and those of Estrada and Perron 
(2016) and Kim et al. (2017) aim to extend the cur-
rent focus of observation-based attribution studies 
to further characterize the warming trend. This 
can help to provide academic research and policy 
making with more relevant information about the 
observed response of the climate system to changes 
in external forcing.
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