672 research outputs found

    Non-invasive Evaluation of Aortic Stiffness Dependence with Aortic Blood Pressure and Internal Radius by Shear Wave Elastography and Ultrafast Imaging

    Get PDF
    Elastic properties of arteries have long been recognized as playing a major role in the cardiovascular system. However, non-invasive in vivo assessment of local arterial stiffness remains challenging and imprecise as current techniques rely on indirect estimates such as wall deformation or pulse wave velocity. Recently, Shear Wave Elastography (SWE) has been proposed to non-invasively assess the intrinsic arterial stiffness. In this study, we applied SWE in the abdominal aortas of rats while increasing blood pressure (BP) to investigate the dependence of shear wave speed with invasive arterial pressure and non-invasive arterial diameter measurements. A 15MHz linear array connected to an ultrafast ultrasonic scanner, set non-invasively, on the abdominal aorta of anesthetized rats (N=5) was used. The SWE acquisition followed by an ultrafast (UF) acquisition was repeated at different moment of the cardiac cycle to assess shear wave speed and arterial diameter variations respectively. Invasive arterial BP catheter placed in the carotid, allowed the accurate measurement of pressure responses to increasing does of phenylephrine infused via a venous catheter. The SWE acquisition coupled to the UF acquisition was repeated for different range of pressure. For normal range of BP, the shear wave speed was found to follow the aortic BP variation during a cardiac cycle. A minimum of (5.06±\pm0.82) m/s during diastole and a maximum of (5.97±\pm0.90) m/s during systole was measured. After injection of phenylephrine, a strong increase of shear wave speed (13.85±\pm5.51) m/s was observed for a peak systolic arterial pressure of (190±\pm10) mmHg. A non-linear relationship between shear wave speed and arterial BP was found. A complete non-invasive method was proposed to characterize the artery with shear wave speed combined with arterial diameter variations. Finally, the results were validated against two parameters the incremental elastic modulus and the pressure elastic modulus derived from BP and arterial diameter variations

    Reaction Networks For Interstellar Chemical Modelling: Improvements and Challenges

    Full text link
    We survey the current situation regarding chemical modelling of the synthesis of molecules in the interstellar medium. The present state of knowledge concerning the rate coefficients and their uncertainties for the major gas-phase processes -- ion-neutral reactions, neutral-neutral reactions, radiative association, and dissociative recombination -- is reviewed. Emphasis is placed on those reactions that have been identified, by sensitivity analyses, as 'crucial' in determining the predicted abundances of the species observed in the interstellar medium. These sensitivity analyses have been carried out for gas-phase models of three representative, molecule-rich, astronomical sources: the cold dense molecular clouds TMC-1 and L134N, and the expanding circumstellar envelope IRC +10216. Our review has led to the proposal of new values and uncertainties for the rate coefficients of many of the key reactions. The impact of these new data on the predicted abundances in TMC-1 and L134N is reported. Interstellar dust particles also influence the observed abundances of molecules in the interstellar medium. Their role is included in gas-grain, as distinct from gas-phase only, models. We review the methods for incorporating both accretion onto, and reactions on, the surfaces of grains in such models, as well as describing some recent experimental efforts to simulate and examine relevant processes in the laboratory. These efforts include experiments on the surface-catalysed recombination of hydrogen atoms, on chemical processing on and in the ices that are known to exist on the surface of interstellar grains, and on desorption processes, which may enable species formed on grains to return to the gas-phase.Comment: Accepted for publication in Space Science Review

    Resonant tunneling diodes as sources for millimeter and submillimeter wavelengths

    Get PDF
    High-quality Resonant Tunneling Diodes have been fabricated and tested as sources for millimeter and submillimeter wavelengths. The devices have shown excellent I-V characteristics with peak-to-valley current ratios as high as 6:1 and current densities in the range of 50-150 kA/cm(exp 2) at 300 K. Used as local oscillators, the diodes are capable of state of the art output power delivered by AlGaAs-based tunneling devices. As harmonic multipliers, a frequency of 320 GHz has been achieved by quintupling the fundamental oscillation of a klystron source

    Mapping Myocardial Fiber Orientation Using Echocardiography-Based Shear Wave Imaging

    Get PDF
    The assessment of disrupted myocardial fiber arrangement may help to understand and diagnose hypertrophic or ischemic cardiomyopathy. We hereby proposed and developed shear wave imaging (SWI), which is an echocardiography-based, noninvasive, real-time, and easy-to-use technique, to map myofiber orientation. Five in vitro porcine and three in vivo open-chest ovine hearts were studied. Known in physics, shear wave propagates faster along than across the fiber direction. SWI is a technique that can generate shear waves travelling in different directions with respect to each myocardial layer. SWI further analyzed the shear wave velocity across the entire left-ventricular (LV) myocardial thickness, ranging between 10 (diastole) and 25 mm (systole), with a resolution of 0.2 mm in the middle segment of the LV anterior wall region. The fiber angle at each myocardial layer was thus estimated by finding the maximum shear wave speed. In the in vitro porcine myocardium (n=5), the SWI-estimated fiber angles gradually changed from +80° ± 7° (endocardium) to +30° ± 13° (midwall) and-40° ± 10° (epicardium) with 0° aligning with the circumference of the heart. This transmural fiber orientation was well correlated with histology findings (r2=0.91± 0.02, p<0.0001). SWI further succeeded in mapping the transmural fiber orientation in three beating ovine hearts in vivo. At midsystole, the average fiber orientation exhibited 71° ± 13° (endocardium), 27° ± 8° (midwall), and-26° ± 30° (epicardium). We demonstrated the capability of SWI in mapping myocardial fiber orientation in vitro and in vivo. SWI may serve as a new tool for the noninvasive characterization of myocardial fiber structure. © 2012 IEEE.published_or_final_versio

    Potential barrier heights at metal on oxygen-terminated diamond interfaces

    No full text
    International audienceElectrical properties of metal-semiconductor (M/SC) and metal/oxide/SC structures built with Zr or ZrO_2 deposited on oxygen-terminated surfaces of (001)-oriented diamond films, comprising a stack of lightly p-doped diamond on a heavily doped layer itself homoepitaxially grown on a Ib substrate, are investigated experimentally and compared to different models. In Schottky barrier diodes, the interfacial oxide layer evidenced by high resolution transmission electron microscopy and electron energy losses spectroscopy before and after annealing, and barrier height inhomogeneities accounts for the measured electrical characteristics until flat bands are reached, in accordance with a model which generalizes that of R.T. Tung [Phys. Rev. B 45, 13509 (1992)] and permits to extract physically meaningful parameters of the three kinds of interface: (a) unannealed ones; (b) annealed at 350°C; (c) annealed at 450°C, with characteristic barrier heights of 2.2-2.5 V in case (a) while as low as 0.96 V in case (c). Possible models of potential barriers for several metals deposited on well defined oxygen-terminated diamond surfaces are discussed and compared to experimental data. It is concluded that interface dipoles of several kinds present at these compound interfaces and their chemical evolution due to annealing are the suitable ingredients able to account for the Mott-Schottky behavior when the effect of the metal work function is ignored, and to justify the reverted slope observed regarding metal work function, in contrast to the trend always reported for all other metal-semiconductor interfaces.Les propriétés électriques et structurales d'interfaces métal/diamant et métal/oxyde/diamant où le métal est le Zirconium et le semi-conducteur comporte un empilement de couches faiblement et fortement dopées au bore sur substrat Ib, sont étudiées expérimentalement et comparées à différents modèles. Dans le barrière de Schottky, une inter-couche d'oxyde d'environ 2 couches atomiques, mise en évidence par diverses techniques de microscopie électronique à transmission, est présente et ajoutée à la présence d'inhomogénéités de barrière de potentiel, est corrélée aux propriétés électriques simulées par un modèle qui généralise celui de R. T. Tung [Phys. Rev. B 45, 13509 (1992)] . Les paramètres physiquement caractéristiques des interfaces (a) non recuites, (b) recuite à 350°C et (c) recuite à 450°C peuvent ainsi être extraits, en particulier des hauteurs de barrière de 2.2-2.5 V dans le cas (a) et aussi basses que 0.96 V dans le cas (c). Les modèles possibles de fixation du niveau de Fermi aux interfaces métal/diamant sont examinés et confrontés aux données récemment publiées pour différents métaux sur la surface oxygénée du diamant. On conclue que les quantités physiques judicieuses sont l'affinité électronique du diamant, fonction de son état de surface, pour justifier l'allure générale conforme au modèle de Mott-Schottky et la force du dipole d'interface, dépendante des liaisons chimiques à l'interface, pour expliquer la pente de la variation de la barrière en fonction du travail de sortie du métal, qui est inversée par rapport à tous les autres semi-conducteurs

    Noninvasive Blood-Brain Barrier Opening in Live Mice

    Get PDF
    Abstract. Most therapeutic agents cannot be delivered to the brain because of brain′s natural defense: the Blood-Brain Barrier (BBB). It has recently been shown that Focused Ultrasound (FUS) can produce reversible and localized BBB opening in the brain when applied in the presence of ultrasound contrast agents post-craniotomy in rabbits [1]. However, a major limitation of ultrasound in the brain is the strong phase aberration and attenuation of the skull bone, and, as a result, no study of trans-cranial ultrasound-targeted drug treatment in the brain in vivo has been reported as of yet. In this study, the feasibility of BBB opening in the hippocampus of wildtype mice using FUS through the intact skull and skin was investigated. In order to investigate the effect of the skull, simulations of ultrasound wave propagation (1.5 MHz) through the skull using µCT data, and needle hydrophone measurements through an exvivo skull were made. The pressure field showed minimal attenuation (18% of the pressure amplitude) and a well-focused pattern through the left and right halves of the parietal bone. In experiments in vivo, the brains of four mice were sonicated through intact skull and skin. Ultrasound sonications (burst length: 20 ms; duty cycle: 20%; acoustic pressure range: 2.0 to 2.7 MPa) was applied 5 times for 30 s per shot with a 30 s delay between shots. Prior to sonication, ultrasound contrast agents (Optison; 10 µL) were injected intravenously. Contrast material enhanced high resolution MR Imaging (9.4 Tesla) was able to distinguish opening of large vessels in the region of the hippocampus. These results demonstrate the feasibility of locally opening the BBB in the mouse hippocampus using focused ultrasound through intact skull and skin. Future investigations will deal with optimization and reproducibility of the technique as well as application on Alzheimer&apos;s-model mice

    Imaging the Mechanics and Electromechanics of the Heart

    Get PDF
    Abstract-The heart is a mechanical pump that is electrically driven. We have previously shown that the contractility of the cardiac muscle can reliably be used in order to assess the extent of ischemia using myocardial elastography. Myocardial elastography estimates displacement and strain during the natural contraction of the myocardium using signal processing techniques on echocardiograms in order to assess the change in mechanical properties as a result of disease. In this paper, we showed that elastographic techniques can be used to estimate and image both the mechanics and electromechanics of normal and pathological hearts in vivo. In order to image the mechanics throughout the entire cardiac cycle, the minimum frame rate was determined to be on the order of 150 fps in a long-axis view and 300 fps in a short-axis view. The incremental and cumulative displacement and strains were measured and imaged for the characterization of normal function and differentiation from infracted myocardium. In order to image the electromechanical function, the incremental displacement was imaged in consecutive cardiac cycles during end-systole in both dogs and humans. The contraction wave velocity in normal dogs was found to be twice higher than in normal humans and twice lower than in ischemic dogs. In conclusion, we have demonstrated that elastographic techniques can be used to detect and quantify the mechanics and electromechanics of the myocardium in vivo. Ongoing investigations entail assessment of myocardial elastography in characterizing and quantifying ischemia and infarction in vivo

    Absorbing boundary conditions for the Westervelt equation

    Full text link
    The focus of this work is on the construction of a family of nonlinear absorbing boundary conditions for the Westervelt equation in one and two space dimensions. The principal ingredient used in the design of such conditions is pseudo-differential calculus. This approach enables to develop high order boundary conditions in a consistent way which are typically more accurate than their low order analogs. Under the hypothesis of small initial data, we establish local well-posedness for the Westervelt equation with the absorbing boundary conditions. The performed numerical experiments illustrate the efficiency of the proposed boundary conditions for different regimes of wave propagation
    corecore